Echolocation detections and digital video surveys provide reliable estimates of the relative density of harbour porpoises

  • Laura D. Williamson (Contributor)
  • Kate L. Brookes (Contributor)
  • Beth E. Scott (Contributor)
  • Isla M. Graham (Contributor)
  • Gareth Bradbury (Contributor)
  • Philip S. Hammond (Contributor)
  • Paul Thompson (Contributor)
  • Brookes Kate L. (Creator)

Dataset

Description

1. Robust estimates of the density or abundance of cetaceans are required to support a wide range of ecological studies and inform management decisions. Considerable effort has been put into the development of line-transect sampling techniques to obtain estimates of absolute density from aerial and boat-based visual surveys. Surveys of cetaceans using acoustic loggers or digital cameras provide alternative methods to estimate relative density that have the potential to reduce cost and provide a verifiable record of all detections. However the ability of these methods to provide reliable estimates of relative density has yet to be established. 2. These methodologies were compared by conducting aerial visual line-transect surveys (n=10 days) and digital video strip-transect surveys (n=4 days) in the Moray Firth, Scotland. Simultaneous acoustic data were collected from moored echolocation detectors (C-PODs) at 58 locations across the study site. Density surface modelling (DSM) of visual survey data was used to estimate spatial variation in relative harbour porpoise density on a 4x4 km grid. DSM was also performed on the digital survey data, and the resulting model output compared to that from visual survey data. Estimates of relative density from visual surveys around acoustic monitoring sites were compared with several metrics previously used to characterise variation in acoustic detections of echolocation clicks. 3. There was a strong correlation between estimates of relative density from visual surveys and digital video surveys (Spearman's ρ=0.85). A correction to account for animals missed on the transect line (previously calculated for visual aerial surveys of harbour porpoise in the North Sea (Hammond et al. 2013)) was used to convert relative density from the visual surveys to absolute density. This allowed calculation of the first estimate of a proxy for detection probability in digital video surveys, suggesting that 61% (CV=0.53) of harbour porpoises were detected. There was also a strong correlation between acoustic detections and density with a Spearman's ρ=0.73 for detection positive hours. 4. These results provide confidence in the emerging use of digital video and acoustic surveys for studying the density of small cetaceans and their responses to environmental and anthropogenic change.,Visual_Survey_DataR data file of the visual survey data in distance format. R Code to open the file provided in readme.txtDigital_Survey_DataR data file of the digital survey data in distance format. R Code to open the file provided in readme.txtVisual_vs_Digital_ComparisonData used for bootstrap comparison of visual and digital DSM estimates to calculate the scaling factor for digital surveys.Acoustic_DataData used for comparison of acoustic indices to estimates of relative density from DSM of visual survey data.

Data type

1. Visual survey data: R data file of the visual survey data in distance format. R Code to open the file provided in readme.txt
2. Digital survey data: R data file of the digital survey data in distance format. R Code to open the file provided in readme.txt
3. Visual Vs digital comparison: Data used for bootstrap comparison of visual and digital DSM estimates to calculate the scaling factor for digital surveys.
4 Acoustic data: Data used for comparison of acoustic indices to estimates of relative density from DSM of visual survey data.

Copyright and Open Data Licencing

CC0 1.0
Date made available1 Jan 2017
PublisherDRYAD
Geographical coverageNorth Sea

Cite this