A dynamic objective function technique for generating multiple solution models in seismic tomography

N. Rawlinson, M. Sambridge, E. Saygin

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

A new technique designed for generating multiple solutions to seismic tomography problems using gradient based inversion is presented. The basic principle is to exploit information gained from previous solutions to help drive the search for new models. This is achieved by adding a feedback or evolution term to the objective function that creates a local maximum at each point in parameter space occupied by the previously computed models. The advantage of this approach is that it only needs to produce a relatively small ensemble of solutions, since each model will substantially differ from all others to the extent permitted by the data. Common features present across the ensemble are, therefore, likely to be well constrained. A synthetic test using surface wave traveltimes and a highly irregular distribution of sources and receivers shows that a range of different velocity models are produced by the new technique. These models tend to be similar in regions of good path coverage, but can differ substantially elsewhere. A simple measure of the variation across the solution ensemble, given by one standard deviation of the velocity at each point, accurately reflects the robustness of the average solution model. Comparison with a standard bootstrap inversion method unequivocally shows that the new approach is superior in the presence of inhomogeneous data coverage that gives rise to under or mixed-determined inverse problems. Estimates of posterior covariance from linear theory correlate more closely with the dynamic objective function results, but require accurate knowledge of a priori model uncertainty. Application of the new method to traveltimes derived from long-term cross-correlations of ambient noise contained in passive seismic data recorded in the Australian region demonstrates its effectiveness in practice, with results well corroborated by prior information. The dynamic objective function scheme has several drawbacks, including a somewhat arbitrary choice for the shape of the evolution term, and no guarantee of a thorough exploration of parameter space. On the other hand, it is tolerant of non-linearity in the inverse problem, is relatively straightforward to implement, and appears to work well in practice. For many applications, it may be a useful addition to the suite of synthetic resolution tests that are commonly used.
Original languageEnglish
Pages (from-to)295-308
Number of pages14
JournalGeophysical Journal International
Volume174
Issue number1
DOIs
Publication statusPublished - Jul 2008

Fingerprint

seismic tomography
Tomography
tomography
inverse problem
Inverse problems
inversions
Australian Region
ambient noise
Surface waves
nonlinearity
cross correlation
surface wave
surface waves
standard deviation
seismic data
receivers
Feedback
gradients
estimates

Keywords

  • inverse theory
  • seismic tomography
  • computational seismology
  • Australia

Cite this

A dynamic objective function technique for generating multiple solution models in seismic tomography. / Rawlinson, N.; Sambridge, M. ; Saygin, E. .

In: Geophysical Journal International, Vol. 174, No. 1, 07.2008, p. 295-308.

Research output: Contribution to journalArticle

Rawlinson, N. ; Sambridge, M. ; Saygin, E. . / A dynamic objective function technique for generating multiple solution models in seismic tomography. In: Geophysical Journal International. 2008 ; Vol. 174, No. 1. pp. 295-308.
@article{fd21c0036b6f40e5b5bdee5f4739a690,
title = "A dynamic objective function technique for generating multiple solution models in seismic tomography",
abstract = "A new technique designed for generating multiple solutions to seismic tomography problems using gradient based inversion is presented. The basic principle is to exploit information gained from previous solutions to help drive the search for new models. This is achieved by adding a feedback or evolution term to the objective function that creates a local maximum at each point in parameter space occupied by the previously computed models. The advantage of this approach is that it only needs to produce a relatively small ensemble of solutions, since each model will substantially differ from all others to the extent permitted by the data. Common features present across the ensemble are, therefore, likely to be well constrained. A synthetic test using surface wave traveltimes and a highly irregular distribution of sources and receivers shows that a range of different velocity models are produced by the new technique. These models tend to be similar in regions of good path coverage, but can differ substantially elsewhere. A simple measure of the variation across the solution ensemble, given by one standard deviation of the velocity at each point, accurately reflects the robustness of the average solution model. Comparison with a standard bootstrap inversion method unequivocally shows that the new approach is superior in the presence of inhomogeneous data coverage that gives rise to under or mixed-determined inverse problems. Estimates of posterior covariance from linear theory correlate more closely with the dynamic objective function results, but require accurate knowledge of a priori model uncertainty. Application of the new method to traveltimes derived from long-term cross-correlations of ambient noise contained in passive seismic data recorded in the Australian region demonstrates its effectiveness in practice, with results well corroborated by prior information. The dynamic objective function scheme has several drawbacks, including a somewhat arbitrary choice for the shape of the evolution term, and no guarantee of a thorough exploration of parameter space. On the other hand, it is tolerant of non-linearity in the inverse problem, is relatively straightforward to implement, and appears to work well in practice. For many applications, it may be a useful addition to the suite of synthetic resolution tests that are commonly used.",
keywords = "inverse theory, seismic tomography, computational seismology, Australia",
author = "N. Rawlinson and M. Sambridge and E. Saygin",
year = "2008",
month = "7",
doi = "10.1111/j.1365-246X.2008.03810.x",
language = "English",
volume = "174",
pages = "295--308",
journal = "Geophysical Journal International",
issn = "0956-540X",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - A dynamic objective function technique for generating multiple solution models in seismic tomography

AU - Rawlinson, N.

AU - Sambridge, M.

AU - Saygin, E.

PY - 2008/7

Y1 - 2008/7

N2 - A new technique designed for generating multiple solutions to seismic tomography problems using gradient based inversion is presented. The basic principle is to exploit information gained from previous solutions to help drive the search for new models. This is achieved by adding a feedback or evolution term to the objective function that creates a local maximum at each point in parameter space occupied by the previously computed models. The advantage of this approach is that it only needs to produce a relatively small ensemble of solutions, since each model will substantially differ from all others to the extent permitted by the data. Common features present across the ensemble are, therefore, likely to be well constrained. A synthetic test using surface wave traveltimes and a highly irregular distribution of sources and receivers shows that a range of different velocity models are produced by the new technique. These models tend to be similar in regions of good path coverage, but can differ substantially elsewhere. A simple measure of the variation across the solution ensemble, given by one standard deviation of the velocity at each point, accurately reflects the robustness of the average solution model. Comparison with a standard bootstrap inversion method unequivocally shows that the new approach is superior in the presence of inhomogeneous data coverage that gives rise to under or mixed-determined inverse problems. Estimates of posterior covariance from linear theory correlate more closely with the dynamic objective function results, but require accurate knowledge of a priori model uncertainty. Application of the new method to traveltimes derived from long-term cross-correlations of ambient noise contained in passive seismic data recorded in the Australian region demonstrates its effectiveness in practice, with results well corroborated by prior information. The dynamic objective function scheme has several drawbacks, including a somewhat arbitrary choice for the shape of the evolution term, and no guarantee of a thorough exploration of parameter space. On the other hand, it is tolerant of non-linearity in the inverse problem, is relatively straightforward to implement, and appears to work well in practice. For many applications, it may be a useful addition to the suite of synthetic resolution tests that are commonly used.

AB - A new technique designed for generating multiple solutions to seismic tomography problems using gradient based inversion is presented. The basic principle is to exploit information gained from previous solutions to help drive the search for new models. This is achieved by adding a feedback or evolution term to the objective function that creates a local maximum at each point in parameter space occupied by the previously computed models. The advantage of this approach is that it only needs to produce a relatively small ensemble of solutions, since each model will substantially differ from all others to the extent permitted by the data. Common features present across the ensemble are, therefore, likely to be well constrained. A synthetic test using surface wave traveltimes and a highly irregular distribution of sources and receivers shows that a range of different velocity models are produced by the new technique. These models tend to be similar in regions of good path coverage, but can differ substantially elsewhere. A simple measure of the variation across the solution ensemble, given by one standard deviation of the velocity at each point, accurately reflects the robustness of the average solution model. Comparison with a standard bootstrap inversion method unequivocally shows that the new approach is superior in the presence of inhomogeneous data coverage that gives rise to under or mixed-determined inverse problems. Estimates of posterior covariance from linear theory correlate more closely with the dynamic objective function results, but require accurate knowledge of a priori model uncertainty. Application of the new method to traveltimes derived from long-term cross-correlations of ambient noise contained in passive seismic data recorded in the Australian region demonstrates its effectiveness in practice, with results well corroborated by prior information. The dynamic objective function scheme has several drawbacks, including a somewhat arbitrary choice for the shape of the evolution term, and no guarantee of a thorough exploration of parameter space. On the other hand, it is tolerant of non-linearity in the inverse problem, is relatively straightforward to implement, and appears to work well in practice. For many applications, it may be a useful addition to the suite of synthetic resolution tests that are commonly used.

KW - inverse theory

KW - seismic tomography

KW - computational seismology

KW - Australia

U2 - 10.1111/j.1365-246X.2008.03810.x

DO - 10.1111/j.1365-246X.2008.03810.x

M3 - Article

VL - 174

SP - 295

EP - 308

JO - Geophysical Journal International

JF - Geophysical Journal International

SN - 0956-540X

IS - 1

ER -