A ground-based radar backscatter investigation in the percolation zone of the Greenland ice sheet

Julian B. T. Scott, Doug Mair, Pete Nienow, Victoria Parry, Elizabeth Morris

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Satellite radar altimeters and scatterometers deployed over ice sheets experience backscatter from the surface and from within the snowpack, termed surface and volume backscatter respectively. In order to assess the errors in satellite altimeter measurements it is vital to know where the return is originating from in the snowpack. This return can vary spatially and temporally. Seasonal variations in the volume backscatter can be a major complicating factor in the radar return from the percolation zone. Ground-based step-frequency radar was deployed in the percolation zone of the Greenland Ice Sheet at ∼ 1945 m elevation (69 51N, 47 15W). Previous measurements in this area made by scientists from the Byrd Polar Research Centre and the University of Kansas, undertaken prior to summer melt events, have shown the strongest backscatter from ice features at around 1 m depth buried beneath the previous end-of-summer surface. In autumn 2004, radar measurements in the Ku band with bandwidths of 1 and 8 GHz were made alongside detailed stratigraphic observations within a 1 km2 site. The radar results revealed no continuous reflecting horizons in the upper 3.5 m of the firn. Shallow cores and snowpits also indicated that there were no spatially continuous stratigraphic horizons across the study site. An average electromagnetic wave velocity of 2.11 ± 0.05 × 108 m s− 1 was determined for the upper metre of the firn. Surface and volume backscatter at vertical incidence were calculated using a standard model. The contribution of the surface backscatter to the total backscatter was on average 6 dB higher than that of the volume backscatter. However, at the higher 8 GHz bandwidth the strongest return frequently originated not from the surface but from within the upper 30 cm of the snowpack, most probably from thin ice layers. At 1 GHz bandwidth these ice layers were not always resolved; their return merged with the surface return, causing it to broaden, with the peak and leading edge moving down. Modelling using density and thickness measurements from shallow cores and snowpits showed that the backscatter from these shallow, thin ice layers could be stronger than the surface return owing to constructive interference from the top and base of the layers.
Original languageEnglish
Pages (from-to)361-373
Number of pages13
JournalRemote Sensing of Environment
Volume104
Issue number4
Early online date1 Aug 2006
DOIs
Publication statusPublished - 30 Oct 2006

Keywords

  • radar backscatter
  • Greenland
  • ice sheet
  • altimeter measurements

Cite this

A ground-based radar backscatter investigation in the percolation zone of the Greenland ice sheet. / Scott, Julian B. T.; Mair, Doug; Nienow, Pete; Parry, Victoria ; Morris, Elizabeth.

In: Remote Sensing of Environment, Vol. 104, No. 4, 30.10.2006, p. 361-373.

Research output: Contribution to journalArticle

Scott, Julian B. T. ; Mair, Doug ; Nienow, Pete ; Parry, Victoria ; Morris, Elizabeth. / A ground-based radar backscatter investigation in the percolation zone of the Greenland ice sheet. In: Remote Sensing of Environment. 2006 ; Vol. 104, No. 4. pp. 361-373.
@article{a84f885338af4d08b2e4a0f6a49f6299,
title = "A ground-based radar backscatter investigation in the percolation zone of the Greenland ice sheet",
abstract = "Satellite radar altimeters and scatterometers deployed over ice sheets experience backscatter from the surface and from within the snowpack, termed surface and volume backscatter respectively. In order to assess the errors in satellite altimeter measurements it is vital to know where the return is originating from in the snowpack. This return can vary spatially and temporally. Seasonal variations in the volume backscatter can be a major complicating factor in the radar return from the percolation zone. Ground-based step-frequency radar was deployed in the percolation zone of the Greenland Ice Sheet at ∼ 1945 m elevation (69 51N, 47 15W). Previous measurements in this area made by scientists from the Byrd Polar Research Centre and the University of Kansas, undertaken prior to summer melt events, have shown the strongest backscatter from ice features at around 1 m depth buried beneath the previous end-of-summer surface. In autumn 2004, radar measurements in the Ku band with bandwidths of 1 and 8 GHz were made alongside detailed stratigraphic observations within a 1 km2 site. The radar results revealed no continuous reflecting horizons in the upper 3.5 m of the firn. Shallow cores and snowpits also indicated that there were no spatially continuous stratigraphic horizons across the study site. An average electromagnetic wave velocity of 2.11 ± 0.05 × 108 m s− 1 was determined for the upper metre of the firn. Surface and volume backscatter at vertical incidence were calculated using a standard model. The contribution of the surface backscatter to the total backscatter was on average 6 dB higher than that of the volume backscatter. However, at the higher 8 GHz bandwidth the strongest return frequently originated not from the surface but from within the upper 30 cm of the snowpack, most probably from thin ice layers. At 1 GHz bandwidth these ice layers were not always resolved; their return merged with the surface return, causing it to broaden, with the peak and leading edge moving down. Modelling using density and thickness measurements from shallow cores and snowpits showed that the backscatter from these shallow, thin ice layers could be stronger than the surface return owing to constructive interference from the top and base of the layers.",
keywords = "radar backscatter, Greenland, ice sheet, altimeter measurements",
author = "Scott, {Julian B. T.} and Doug Mair and Pete Nienow and Victoria Parry and Elizabeth Morris",
year = "2006",
month = "10",
day = "30",
doi = "10.1016/j.rse.2006.05.009",
language = "English",
volume = "104",
pages = "361--373",
journal = "Remote Sensing of Environment",
issn = "0034-4257",
publisher = "Elsevier Inc.",
number = "4",

}

TY - JOUR

T1 - A ground-based radar backscatter investigation in the percolation zone of the Greenland ice sheet

AU - Scott, Julian B. T.

AU - Mair, Doug

AU - Nienow, Pete

AU - Parry, Victoria

AU - Morris, Elizabeth

PY - 2006/10/30

Y1 - 2006/10/30

N2 - Satellite radar altimeters and scatterometers deployed over ice sheets experience backscatter from the surface and from within the snowpack, termed surface and volume backscatter respectively. In order to assess the errors in satellite altimeter measurements it is vital to know where the return is originating from in the snowpack. This return can vary spatially and temporally. Seasonal variations in the volume backscatter can be a major complicating factor in the radar return from the percolation zone. Ground-based step-frequency radar was deployed in the percolation zone of the Greenland Ice Sheet at ∼ 1945 m elevation (69 51N, 47 15W). Previous measurements in this area made by scientists from the Byrd Polar Research Centre and the University of Kansas, undertaken prior to summer melt events, have shown the strongest backscatter from ice features at around 1 m depth buried beneath the previous end-of-summer surface. In autumn 2004, radar measurements in the Ku band with bandwidths of 1 and 8 GHz were made alongside detailed stratigraphic observations within a 1 km2 site. The radar results revealed no continuous reflecting horizons in the upper 3.5 m of the firn. Shallow cores and snowpits also indicated that there were no spatially continuous stratigraphic horizons across the study site. An average electromagnetic wave velocity of 2.11 ± 0.05 × 108 m s− 1 was determined for the upper metre of the firn. Surface and volume backscatter at vertical incidence were calculated using a standard model. The contribution of the surface backscatter to the total backscatter was on average 6 dB higher than that of the volume backscatter. However, at the higher 8 GHz bandwidth the strongest return frequently originated not from the surface but from within the upper 30 cm of the snowpack, most probably from thin ice layers. At 1 GHz bandwidth these ice layers were not always resolved; their return merged with the surface return, causing it to broaden, with the peak and leading edge moving down. Modelling using density and thickness measurements from shallow cores and snowpits showed that the backscatter from these shallow, thin ice layers could be stronger than the surface return owing to constructive interference from the top and base of the layers.

AB - Satellite radar altimeters and scatterometers deployed over ice sheets experience backscatter from the surface and from within the snowpack, termed surface and volume backscatter respectively. In order to assess the errors in satellite altimeter measurements it is vital to know where the return is originating from in the snowpack. This return can vary spatially and temporally. Seasonal variations in the volume backscatter can be a major complicating factor in the radar return from the percolation zone. Ground-based step-frequency radar was deployed in the percolation zone of the Greenland Ice Sheet at ∼ 1945 m elevation (69 51N, 47 15W). Previous measurements in this area made by scientists from the Byrd Polar Research Centre and the University of Kansas, undertaken prior to summer melt events, have shown the strongest backscatter from ice features at around 1 m depth buried beneath the previous end-of-summer surface. In autumn 2004, radar measurements in the Ku band with bandwidths of 1 and 8 GHz were made alongside detailed stratigraphic observations within a 1 km2 site. The radar results revealed no continuous reflecting horizons in the upper 3.5 m of the firn. Shallow cores and snowpits also indicated that there were no spatially continuous stratigraphic horizons across the study site. An average electromagnetic wave velocity of 2.11 ± 0.05 × 108 m s− 1 was determined for the upper metre of the firn. Surface and volume backscatter at vertical incidence were calculated using a standard model. The contribution of the surface backscatter to the total backscatter was on average 6 dB higher than that of the volume backscatter. However, at the higher 8 GHz bandwidth the strongest return frequently originated not from the surface but from within the upper 30 cm of the snowpack, most probably from thin ice layers. At 1 GHz bandwidth these ice layers were not always resolved; their return merged with the surface return, causing it to broaden, with the peak and leading edge moving down. Modelling using density and thickness measurements from shallow cores and snowpits showed that the backscatter from these shallow, thin ice layers could be stronger than the surface return owing to constructive interference from the top and base of the layers.

KW - radar backscatter

KW - Greenland

KW - ice sheet

KW - altimeter measurements

U2 - 10.1016/j.rse.2006.05.009

DO - 10.1016/j.rse.2006.05.009

M3 - Article

VL - 104

SP - 361

EP - 373

JO - Remote Sensing of Environment

JF - Remote Sensing of Environment

SN - 0034-4257

IS - 4

ER -