A minimal rupture cascade model for living cell plasticity

Stefano Polizzi, Bastien Laperrousaz, Francisco J. Perez-Reche, Franck E. Nicolini, Véronique Maguer Satta, Alain Arneodo, Françoise Argoul

Research output: Contribution to journalArticle

3 Citations (Scopus)
10 Downloads (Pure)

Abstract

Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34 + cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.
Original languageEnglish
Article number053057
Pages (from-to)1-18
Number of pages18
JournalNew Journal of Physics
Volume20
Issue number5
Early online date10 May 2018
DOIs
Publication statusPublished - 29 May 2018

Keywords

  • nanoindentation AFM technique
  • cell mechanics
  • actin cytoskeleton
  • ductile and brittle failures
  • log-normal statistics
  • rupture cascade model
  • chronic myelogenous leukemia

Fingerprint Dive into the research topics of 'A minimal rupture cascade model for living cell plasticity'. Together they form a unique fingerprint.

Cite this