### Abstract

the dimensions of simple modules of a restricted Lie algebra g. The first predicts the maximal dimension of simple g-modules and in this paper we apply the Lefschetz Principle and classical techniques from Lie theory to prove this conjecture for all restricted Lie subalgebras of glnpkq whenever k is an algebraically closed field of sufficiently large characteristic p (depending on n). As a consequence we deduce that the conjecture holds for the Lie algebra of an affine algebraic group scheme over any commutative ring, after specialising to an algebraically closed field of almost any characteristic.

In the appendix to this paper, written by Akaki Tikaradze, an alternative, short proof of the first Kac–Weisfeiler conjecture is given for the Lie algebra of group scheme over a finitely generated ring R Ď C, after base change to a field of large positive characteristic.

Original language | English |
---|---|

Pages (from-to) | 278-293 |

Number of pages | 16 |

Journal | Representation Theory |

Volume | 23 |

Early online date | 16 Sep 2019 |

DOIs | |

Publication status | Published - 2019 |

### Fingerprint

### Keywords

- LIE-ALGEBRAS
- REPRESENTATIONS

### Cite this

*Representation Theory*,

*23*, 278-293. https://doi.org/10.1090/ert/529

**A proof of the first Kac-Weisfeiler conjecture in large characteristics.** / Martin, Benjamin; Stewart, David I. (Corresponding Author); Topley, Lewis; Tikaradze, Akaki (Collaborator).

Research output: Contribution to journal › Article

*Representation Theory*, vol. 23, pp. 278-293. https://doi.org/10.1090/ert/529

}

TY - JOUR

T1 - A proof of the first Kac-Weisfeiler conjecture in large characteristics

AU - Martin, Benjamin

AU - Stewart, David I.

AU - Topley, Lewis

A2 - Tikaradze, Akaki

N1 - The authors would like to thank Akaki Tikaradze for useful correspondence and for contributing the appendix to this paper, as well as James Waldron for useful remarks on the first draft. We also thank both of the referees for numerous helpful suggestions, including the alternative proof of Proposition 3.8 which we use here. The third author also gratefully acknowledges the support of EPSRC grant number EP/N034449/1.

PY - 2019

Y1 - 2019

N2 - In 1971, Kac and Weisfeiler made two influential conjectures describingthe dimensions of simple modules of a restricted Lie algebra g. The first predicts the maximal dimension of simple g-modules and in this paper we apply the Lefschetz Principle and classical techniques from Lie theory to prove this conjecture for all restricted Lie subalgebras of glnpkq whenever k is an algebraically closed field of sufficiently large characteristic p (depending on n). As a consequence we deduce that the conjecture holds for the Lie algebra of an affine algebraic group scheme over any commutative ring, after specialising to an algebraically closed field of almost any characteristic. In the appendix to this paper, written by Akaki Tikaradze, an alternative, short proof of the first Kac–Weisfeiler conjecture is given for the Lie algebra of group scheme over a finitely generated ring R Ď C, after base change to a field of large positive characteristic.

AB - In 1971, Kac and Weisfeiler made two influential conjectures describingthe dimensions of simple modules of a restricted Lie algebra g. The first predicts the maximal dimension of simple g-modules and in this paper we apply the Lefschetz Principle and classical techniques from Lie theory to prove this conjecture for all restricted Lie subalgebras of glnpkq whenever k is an algebraically closed field of sufficiently large characteristic p (depending on n). As a consequence we deduce that the conjecture holds for the Lie algebra of an affine algebraic group scheme over any commutative ring, after specialising to an algebraically closed field of almost any characteristic. In the appendix to this paper, written by Akaki Tikaradze, an alternative, short proof of the first Kac–Weisfeiler conjecture is given for the Lie algebra of group scheme over a finitely generated ring R Ď C, after base change to a field of large positive characteristic.

KW - LIE-ALGEBRAS

KW - REPRESENTATIONS

UR - http://www.scopus.com/inward/record.url?scp=85073961670&partnerID=8YFLogxK

U2 - 10.1090/ert/529

DO - 10.1090/ert/529

M3 - Article

VL - 23

SP - 278

EP - 293

JO - Representation Theory

JF - Representation Theory

SN - 1088-4165

ER -