Abstract
We define a complex of bimodules over the Iwahori-Hecke algebra associated to a finite Coxeter group, calculate its cohomology and show that it induces a derived equivalence over its module category extending the Morita equivalence given by a certain algebra automorphism. We show further that when tensored with the index representation this complex becomes isomorphic to the one-sided q-analogue of the Coxeter complex previously defined by V. Deodhar [On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (2) (1987) 483-506] and A. Mathas [A q-analogue of the Coxeter complex, J. Algebra 164 (3) (1994) 831-848]. (c) 2005 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 128-134 |
Number of pages | 6 |
Journal | Journal of Algebra |
Volume | 289 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2005 |