TY - JOUR
T1 - A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation
AU - Kemp, Alain
AU - Betney, Russell
AU - Ciandrini, Luca
AU - Schwenger, Alexandra Carmen
AU - Romano, M Carmen
AU - Stansfield, Ian
N1 - © 2012 Blackwell Publishing Ltd.
PY - 2013/1
Y1 - 2013/1
N2 - In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG-decoding tRNAGlnCUG. A mutant allele, sup70-65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNAGlnCUG anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70-65 tRNAGlnCUG is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG-rich ORFs in the tRNAGlnCUG-depleted sup70-65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70-65 pseudohyphal phenotype was partly complemented by overexpressing CAA-decoding tRNAGlnUUG, an inefficient wobble-decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5' end of an ORF can reduce eukaryote translational expression, and that the mutant tRNACUGGln constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.
AB - In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG-decoding tRNAGlnCUG. A mutant allele, sup70-65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNAGlnCUG anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70-65 tRNAGlnCUG is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG-rich ORFs in the tRNAGlnCUG-depleted sup70-65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70-65 pseudohyphal phenotype was partly complemented by overexpressing CAA-decoding tRNAGlnUUG, an inefficient wobble-decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5' end of an ORF can reduce eukaryote translational expression, and that the mutant tRNACUGGln constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.
U2 - 10.1111/mmi.12096
DO - 10.1111/mmi.12096
M3 - Article
C2 - 23146061
VL - 87
SP - 284
EP - 300
JO - Molecular Microbiology
JF - Molecular Microbiology
SN - 0950-382X
IS - 2
ER -