### Abstract

In an earlier work the notion of absolute continuity was extended from finitely additive measures to non-commutative C*-algebras. But to obtain a generalisation of the Vitali–Hahn–Saks theorem valid for all C*-algebras it was necessary to introduce ‘weak’ and ‘strong’ absolute continuity. For commutative algebras, these two notions of absolute continuity coincide but, given recent work by Chetcuti and Hamhalter, it is reasonable to ask if there are wider classes of C*-algebras for which weak and strong absolute continuity coincide.We show here that this is not true. If weak and strong absolute continuity coincide for a given algebra then the algebra must be commutative.

Original language | English |
---|---|

Pages (from-to) | 135-140 |

Number of pages | 6 |

Journal | Quarterly Journal of Mathematics |

Volume | 61 |

Issue number | 1 |

Early online date | 14 Nov 2008 |

DOIs | |

Publication status | Published - Mar 2010 |

## Fingerprint Dive into the research topics of 'Absolute continuity on C*-algebras'. Together they form a unique fingerprint.

## Cite this

Saito, K., & Wright, J. D. M. (2010). Absolute continuity on C*-algebras.

*Quarterly Journal of Mathematics*,*61*(1), 135-140. https://doi.org/10.1093/qmath/han028