Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod

Daniel J. Mayor, Kathryn Cook, Barry Thornton, Pamela Walsham, Ursula F. M. Witte, Alain F. Zuur, Thomas R. Anderson

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

1. Marine copepods of the genus Calanus can reproduce prior to the spring bloom in the absence of sufficient food. Their starvation physiology, and hence the factors limiting their pre-bloom population growth (egg production), remain poorly understood.

2. Stoichiometric theory can provide insights into the factors controlling an organism's growth and the fate of elements in an ecosystem. It is underpinned by substrate utilization efficiencies that relate to key physiological processes such as absorption efficiencies (AEs) and biomass turnover. These parameters are seldom investigated, particularly in the case of essential 'micronutrients' such as the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

3. Calanus spp. were fed briefly and subsequently starved for 5 days to determine basal turnover rates of biomass carbon, nitrogen and essential PUFAs. The effect of short-term fasting on nitrogen isotope signatures was also examined. The elemental, fatty acid and isotopic composition of their faecal pellets were compared to that of their food, providing insights into AEs and digestive isotopic discrimination.

4. Gut AEs typically followed the sequence: PUFA > nitrogen > carbon, although low AE for DHA was a notable exception. Starvation-induced losses of carbon, nitrogen, EPA and DHA demonstrate that homeostatic organisms must ingest all of these substrates in substantial quantity to achieve positive net growth.

5. Egested material was significantly depleted in 13C and 15N relative to the ingested food. We attribute this to isotopic discrimination at the macromolecular level, indicating that food quality contributes to the isotopic signature of a consumer organism. Values of delta 15N in the copepods' tissues did not increase during starvation, despite significant losses of bulk nitrogen. This supports the suggestion that dissimilatory protein pathways in marine crustaceans are non-discriminating.

6. The significant basal turnover rates and variable AEs for essential PUFAs and nitrogen presented herein demonstrate that organisms cannot be assumed to utilize all nutritious substrates with the same, high efficiency, even when scarce in the diet. Our data highlight the need for a more detailed understanding of organismal physiology before isotopic and stoichiometric models can be meaningfully constructed and parameterized.

Original languageEnglish
Pages (from-to)509-518
Number of pages10
JournalFunctional Ecology
Volume25
Issue number3
DOIs
Publication statusPublished - Jun 2011

Keywords

  • absorption efficiency
  • Calanus
  • docosahexaenoic acid
  • ecological stoichiometry
  • eicosapentaenoic acid
  • essential polyunsaturated fatty acids
  • isotope fractionation
  • basal biomass turnover
  • stable carbon-isotope
  • protein-turnover
  • fecal pellets
  • food quality
  • Fram Strait
  • amino-acid
  • Euphausia-superba
  • organic matter
  • Nowegian Sea
  • Geenland Sea

Cite this

Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod. / Mayor, Daniel J.; Cook, Kathryn; Thornton, Barry; Walsham, Pamela; Witte, Ursula F. M.; Zuur, Alain F.; Anderson, Thomas R.

In: Functional Ecology, Vol. 25, No. 3, 06.2011, p. 509-518.

Research output: Contribution to journalArticle

Mayor, Daniel J. ; Cook, Kathryn ; Thornton, Barry ; Walsham, Pamela ; Witte, Ursula F. M. ; Zuur, Alain F. ; Anderson, Thomas R. / Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod. In: Functional Ecology. 2011 ; Vol. 25, No. 3. pp. 509-518.
@article{83cb00c2bbf64b6183fa96ebf04a0781,
title = "Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod",
abstract = "1. Marine copepods of the genus Calanus can reproduce prior to the spring bloom in the absence of sufficient food. Their starvation physiology, and hence the factors limiting their pre-bloom population growth (egg production), remain poorly understood. 2. Stoichiometric theory can provide insights into the factors controlling an organism's growth and the fate of elements in an ecosystem. It is underpinned by substrate utilization efficiencies that relate to key physiological processes such as absorption efficiencies (AEs) and biomass turnover. These parameters are seldom investigated, particularly in the case of essential 'micronutrients' such as the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 3. Calanus spp. were fed briefly and subsequently starved for 5 days to determine basal turnover rates of biomass carbon, nitrogen and essential PUFAs. The effect of short-term fasting on nitrogen isotope signatures was also examined. The elemental, fatty acid and isotopic composition of their faecal pellets were compared to that of their food, providing insights into AEs and digestive isotopic discrimination. 4. Gut AEs typically followed the sequence: PUFA > nitrogen > carbon, although low AE for DHA was a notable exception. Starvation-induced losses of carbon, nitrogen, EPA and DHA demonstrate that homeostatic organisms must ingest all of these substrates in substantial quantity to achieve positive net growth. 5. Egested material was significantly depleted in 13C and 15N relative to the ingested food. We attribute this to isotopic discrimination at the macromolecular level, indicating that food quality contributes to the isotopic signature of a consumer organism. Values of delta 15N in the copepods' tissues did not increase during starvation, despite significant losses of bulk nitrogen. This supports the suggestion that dissimilatory protein pathways in marine crustaceans are non-discriminating. 6. The significant basal turnover rates and variable AEs for essential PUFAs and nitrogen presented herein demonstrate that organisms cannot be assumed to utilize all nutritious substrates with the same, high efficiency, even when scarce in the diet. Our data highlight the need for a more detailed understanding of organismal physiology before isotopic and stoichiometric models can be meaningfully constructed and parameterized.",
keywords = "absorption efficiency, Calanus, docosahexaenoic acid, ecological stoichiometry, eicosapentaenoic acid, essential polyunsaturated fatty acids, isotope fractionation, basal biomass turnover, stable carbon-isotope, protein-turnover, fecal pellets, food quality, Fram Strait, amino-acid, Euphausia-superba, organic matter, Nowegian Sea, Geenland Sea",
author = "Mayor, {Daniel J.} and Kathryn Cook and Barry Thornton and Pamela Walsham and Witte, {Ursula F. M.} and Zuur, {Alain F.} and Anderson, {Thomas R.}",
year = "2011",
month = "6",
doi = "10.1111/j.1365-2435.2010.01791.x",
language = "English",
volume = "25",
pages = "509--518",
journal = "Functional Ecology",
issn = "0269-8463",
publisher = "Blackwell Publishing Limited",
number = "3",

}

TY - JOUR

T1 - Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod

AU - Mayor, Daniel J.

AU - Cook, Kathryn

AU - Thornton, Barry

AU - Walsham, Pamela

AU - Witte, Ursula F. M.

AU - Zuur, Alain F.

AU - Anderson, Thomas R.

PY - 2011/6

Y1 - 2011/6

N2 - 1. Marine copepods of the genus Calanus can reproduce prior to the spring bloom in the absence of sufficient food. Their starvation physiology, and hence the factors limiting their pre-bloom population growth (egg production), remain poorly understood. 2. Stoichiometric theory can provide insights into the factors controlling an organism's growth and the fate of elements in an ecosystem. It is underpinned by substrate utilization efficiencies that relate to key physiological processes such as absorption efficiencies (AEs) and biomass turnover. These parameters are seldom investigated, particularly in the case of essential 'micronutrients' such as the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 3. Calanus spp. were fed briefly and subsequently starved for 5 days to determine basal turnover rates of biomass carbon, nitrogen and essential PUFAs. The effect of short-term fasting on nitrogen isotope signatures was also examined. The elemental, fatty acid and isotopic composition of their faecal pellets were compared to that of their food, providing insights into AEs and digestive isotopic discrimination. 4. Gut AEs typically followed the sequence: PUFA > nitrogen > carbon, although low AE for DHA was a notable exception. Starvation-induced losses of carbon, nitrogen, EPA and DHA demonstrate that homeostatic organisms must ingest all of these substrates in substantial quantity to achieve positive net growth. 5. Egested material was significantly depleted in 13C and 15N relative to the ingested food. We attribute this to isotopic discrimination at the macromolecular level, indicating that food quality contributes to the isotopic signature of a consumer organism. Values of delta 15N in the copepods' tissues did not increase during starvation, despite significant losses of bulk nitrogen. This supports the suggestion that dissimilatory protein pathways in marine crustaceans are non-discriminating. 6. The significant basal turnover rates and variable AEs for essential PUFAs and nitrogen presented herein demonstrate that organisms cannot be assumed to utilize all nutritious substrates with the same, high efficiency, even when scarce in the diet. Our data highlight the need for a more detailed understanding of organismal physiology before isotopic and stoichiometric models can be meaningfully constructed and parameterized.

AB - 1. Marine copepods of the genus Calanus can reproduce prior to the spring bloom in the absence of sufficient food. Their starvation physiology, and hence the factors limiting their pre-bloom population growth (egg production), remain poorly understood. 2. Stoichiometric theory can provide insights into the factors controlling an organism's growth and the fate of elements in an ecosystem. It is underpinned by substrate utilization efficiencies that relate to key physiological processes such as absorption efficiencies (AEs) and biomass turnover. These parameters are seldom investigated, particularly in the case of essential 'micronutrients' such as the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 3. Calanus spp. were fed briefly and subsequently starved for 5 days to determine basal turnover rates of biomass carbon, nitrogen and essential PUFAs. The effect of short-term fasting on nitrogen isotope signatures was also examined. The elemental, fatty acid and isotopic composition of their faecal pellets were compared to that of their food, providing insights into AEs and digestive isotopic discrimination. 4. Gut AEs typically followed the sequence: PUFA > nitrogen > carbon, although low AE for DHA was a notable exception. Starvation-induced losses of carbon, nitrogen, EPA and DHA demonstrate that homeostatic organisms must ingest all of these substrates in substantial quantity to achieve positive net growth. 5. Egested material was significantly depleted in 13C and 15N relative to the ingested food. We attribute this to isotopic discrimination at the macromolecular level, indicating that food quality contributes to the isotopic signature of a consumer organism. Values of delta 15N in the copepods' tissues did not increase during starvation, despite significant losses of bulk nitrogen. This supports the suggestion that dissimilatory protein pathways in marine crustaceans are non-discriminating. 6. The significant basal turnover rates and variable AEs for essential PUFAs and nitrogen presented herein demonstrate that organisms cannot be assumed to utilize all nutritious substrates with the same, high efficiency, even when scarce in the diet. Our data highlight the need for a more detailed understanding of organismal physiology before isotopic and stoichiometric models can be meaningfully constructed and parameterized.

KW - absorption efficiency

KW - Calanus

KW - docosahexaenoic acid

KW - ecological stoichiometry

KW - eicosapentaenoic acid

KW - essential polyunsaturated fatty acids

KW - isotope fractionation

KW - basal biomass turnover

KW - stable carbon-isotope

KW - protein-turnover

KW - fecal pellets

KW - food quality

KW - Fram Strait

KW - amino-acid

KW - Euphausia-superba

KW - organic matter

KW - Nowegian Sea

KW - Geenland Sea

U2 - 10.1111/j.1365-2435.2010.01791.x

DO - 10.1111/j.1365-2435.2010.01791.x

M3 - Article

VL - 25

SP - 509

EP - 518

JO - Functional Ecology

JF - Functional Ecology

SN - 0269-8463

IS - 3

ER -