TY - JOUR
T1 - Adhesion of cellulolytic ruminal bacteria to barley straw
AU - Bhat, S.
AU - Wallace, R. J.
AU - Orskov, E. R.
PY - 1990/9
Y1 - 1990/9
N2 - Adhesion of the cellulolytic ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes to barley straw was measured by incubating bacterial suspensions with hammer-milled straw for 30 min, filtering the mixtures through sintered glass filters, and measuring the optical densities of the filtrates. Maximum adhesion of both species occurred at pH 6.0 and during mid- to late-exponential phase. Adhesion was saturable at 33 and 23 mg (dry weight) g of straw-1 for R. flavefaciens and F. succinogenes, respectively. Methyl cellulose and carboxymethyl cellulose inhibited adhesion by 24 to 33%. Competition between species was determined by measuring characteristic cell-associated enzyme activities in filtrates of mixtures incubated with straw; p-nitrophenyl-ß-D-lactopyranoside hydrolysis was used as a marker for F. succinogenes, while either ß-xylosidase or carboxymethyl cellulase was used for R. flavefaciens, depending on the other species present. R. flavefaciens had no influence on F. succinogenes adhesion, and F. succinogenes had only a minor (<20%) effect on R. flavefaciens adhesion. The noncellulolytic ruminal bacteria Bacteroides ruminicola and Selenomonas ruminantium had no influence on adhesion of either cellulolytic species, although these organisms also adhered to the straw. We concluded that R. flavefaciens and F. succinogenes have separate, specific adhesion sites on barley straw that are not obscured by competition with non-cellulolytic species.
AB - Adhesion of the cellulolytic ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes to barley straw was measured by incubating bacterial suspensions with hammer-milled straw for 30 min, filtering the mixtures through sintered glass filters, and measuring the optical densities of the filtrates. Maximum adhesion of both species occurred at pH 6.0 and during mid- to late-exponential phase. Adhesion was saturable at 33 and 23 mg (dry weight) g of straw-1 for R. flavefaciens and F. succinogenes, respectively. Methyl cellulose and carboxymethyl cellulose inhibited adhesion by 24 to 33%. Competition between species was determined by measuring characteristic cell-associated enzyme activities in filtrates of mixtures incubated with straw; p-nitrophenyl-ß-D-lactopyranoside hydrolysis was used as a marker for F. succinogenes, while either ß-xylosidase or carboxymethyl cellulase was used for R. flavefaciens, depending on the other species present. R. flavefaciens had no influence on F. succinogenes adhesion, and F. succinogenes had only a minor (<20%) effect on R. flavefaciens adhesion. The noncellulolytic ruminal bacteria Bacteroides ruminicola and Selenomonas ruminantium had no influence on adhesion of either cellulolytic species, although these organisms also adhered to the straw. We concluded that R. flavefaciens and F. succinogenes have separate, specific adhesion sites on barley straw that are not obscured by competition with non-cellulolytic species.
UR - http://www.scopus.com/inward/record.url?scp=0025007808&partnerID=8YFLogxK
M3 - Article
C2 - 16348278
AN - SCOPUS:0025007808
VL - 56
SP - 2698
EP - 2703
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
SN - 0099-2240
IS - 9
ER -