Age-dependent changes in hippocampal synaptic transmission and plasticity in the PLB1(Triple) Alzheimer mouse

David J Koss, Benjamin D Drever, Sandra Stoppelkamp, Gernot Riedel, Bettina Platt

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIa regulatory element. These mice were crossed with an asymptomatic presenilin1(A246E) overexpressing line to generate PLB1(Triple) mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1(Triple) offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1(Triple) mice up to 12 months, but 2-year-old homozygous PLB1(Triple) mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1(Triple) mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.
Original languageEnglish
Pages (from-to)2585-2601
Number of pages17
JournalCellular and Molecular Life Sciences
Volume70
Issue number14
Early online date14 Feb 2013
DOIs
Publication statusPublished - Jul 2013

Fingerprint

Neuronal Plasticity
Synaptic Transmission
Amyloid beta-Protein Precursor
Transgenes
Alzheimer Disease
Depression
Genes
Endophenotypes
Amyloidogenic Proteins
Gene Expression
Hypoxanthine Phosphoribosyltransferase
tau Proteins
Synaptic Potentials
Microtubule-Associated Proteins
Long-Term Potentiation
Pyramidal Cells
Prosencephalon
Evoked Potentials
Amyloid
In Situ Hybridization

Keywords

  • transgenic mice
  • amyloid
  • tau
  • immunochemistry
  • synaptic plasticity
  • LTP
  • LTD

Cite this

Age-dependent changes in hippocampal synaptic transmission and plasticity in the PLB1(Triple) Alzheimer mouse. / Koss, David J; Drever, Benjamin D; Stoppelkamp, Sandra; Riedel, Gernot; Platt, Bettina.

In: Cellular and Molecular Life Sciences, Vol. 70, No. 14, 07.2013, p. 2585-2601.

Research output: Contribution to journalArticle

@article{fa7524e3e9434bf29b31c92a2eb696f8,
title = "Age-dependent changes in hippocampal synaptic transmission and plasticity in the PLB1(Triple) Alzheimer mouse",
abstract = "Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIa regulatory element. These mice were crossed with an asymptomatic presenilin1(A246E) overexpressing line to generate PLB1(Triple) mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1(Triple) offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1(Triple) mice up to 12 months, but 2-year-old homozygous PLB1(Triple) mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1(Triple) mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.",
keywords = "transgenic mice, amyloid, tau, immunochemistry, synaptic plasticity, LTP, LTD",
author = "Koss, {David J} and Drever, {Benjamin D} and Sandra Stoppelkamp and Gernot Riedel and Bettina Platt",
year = "2013",
month = "7",
doi = "10.1007/s00018-013-1273-9",
language = "English",
volume = "70",
pages = "2585--2601",
journal = "Cellular and Molecular Life Sciences",
issn = "1420-682X",
publisher = "Birkhauser Verlag Basel",
number = "14",

}

TY - JOUR

T1 - Age-dependent changes in hippocampal synaptic transmission and plasticity in the PLB1(Triple) Alzheimer mouse

AU - Koss, David J

AU - Drever, Benjamin D

AU - Stoppelkamp, Sandra

AU - Riedel, Gernot

AU - Platt, Bettina

PY - 2013/7

Y1 - 2013/7

N2 - Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIa regulatory element. These mice were crossed with an asymptomatic presenilin1(A246E) overexpressing line to generate PLB1(Triple) mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1(Triple) offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1(Triple) mice up to 12 months, but 2-year-old homozygous PLB1(Triple) mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1(Triple) mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.

AB - Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIa regulatory element. These mice were crossed with an asymptomatic presenilin1(A246E) overexpressing line to generate PLB1(Triple) mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1(Triple) offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1(Triple) mice up to 12 months, but 2-year-old homozygous PLB1(Triple) mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1(Triple) mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.

KW - transgenic mice

KW - amyloid

KW - tau

KW - immunochemistry

KW - synaptic plasticity

KW - LTP

KW - LTD

U2 - 10.1007/s00018-013-1273-9

DO - 10.1007/s00018-013-1273-9

M3 - Article

VL - 70

SP - 2585

EP - 2601

JO - Cellular and Molecular Life Sciences

JF - Cellular and Molecular Life Sciences

SN - 1420-682X

IS - 14

ER -