Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells

Lena Kastl, Iain Brown, Andrew C Schofield

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Docetaxel is an effective chemotherapy drug to treat breast cancer but the underlying molecular mechanisms of drug resistance are not fully understood. DNA methylation is an epigenetic event, involved in the control of gene expression, which is known to play an important role in cancer and chemotherapy drug resistance. To investigate the role of DNA methylation in docetaxel resistance in breast cancer we used two human breast cancer cell lines (MCF-7 and MDA-MB-231) that were made resistant to docetaxel. Docetaxel-resistant sub-lines were treated with different concentrations of decitabine. Global methylation and DNA methyltransferase (DNMT) activity was measured using an ELISA-based assay. Quantitative real-time PCR was used to study DNMT gene expression. Cell viability was studied by MTT assay. Global methylation was increased in MCF-7 but not significantly changed in MDA-MB-231 docetaxel-resistant cells. Decreased DNMT activity and decreased DNMT1 and DNMT3b mRNA expression was associated with docetaxel resistance in both cell lines. To investigate how the components of the DNA methylation machinery may contribute towards docetaxel resistance, decitabine (5-aza-2'-deoxycytidine), an inhibitor of DNA methylation, was used. Decitabine treatment decreased global methylation, DNMT activity and DNMT1, DNMT3a and DNMT3b mRNA expression in MDA-MB-231 docetaxel-resistant cells. In contrast, decitabine-treated MCF-7 docetaxel-resistant cells showed increased DNMT1, DNMT3a and DNMT3b mRNA expression indicating a cell line specific effect of decitabine. Decitabine treatment increased resistance in MCF-7 docetaxel-resistant cells and in the parental MCF-7 and MDA-MB231 docetaxel-sensitive cell lines, however, it did not alter response to docetaxel in MDA-MB-231 docetaxel-resistant cells. This study demonstrates that changes in the DNA methylation machinery are associated with resistance to docetaxel in breast cancer cells. The use of epigenetic therapies, as a strategy to overcome drug resistance, needs to be investigated more fully to determine their effectiveness in different cancers and for different chemotherapy drugs.
Original languageEnglish
Pages (from-to)1235-1241
Number of pages7
JournalInternational Journal of Oncology
Volume36
Issue number5
DOIs
Publication statusPublished - May 2010

Fingerprint

docetaxel
decitabine
DNA Methylation
Breast Neoplasms
Methyltransferases
Drug Resistance
Cell Line
Epigenomics
Messenger RNA

Keywords

  • breast disease
  • mamamry gland diseases
  • cancer
  • malignant tumor
  • taxane derivatives
  • antimitotic
  • treatment
  • antineoplastic agent
  • cancerology
  • tumor cell
  • chemotherapy
  • human
  • treatment resistance
  • breast cancer
  • methylation
  • DNA
  • docetaxel

Cite this

Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. / Kastl, Lena; Brown, Iain; Schofield, Andrew C.

In: International Journal of Oncology, Vol. 36, No. 5, 05.2010, p. 1235-1241.

Research output: Contribution to journalArticle

Kastl, Lena ; Brown, Iain ; Schofield, Andrew C. / Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. In: International Journal of Oncology. 2010 ; Vol. 36, No. 5. pp. 1235-1241.
@article{f74a616d61da4b9190bcaa40ddd7b499,
title = "Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells",
abstract = "Docetaxel is an effective chemotherapy drug to treat breast cancer but the underlying molecular mechanisms of drug resistance are not fully understood. DNA methylation is an epigenetic event, involved in the control of gene expression, which is known to play an important role in cancer and chemotherapy drug resistance. To investigate the role of DNA methylation in docetaxel resistance in breast cancer we used two human breast cancer cell lines (MCF-7 and MDA-MB-231) that were made resistant to docetaxel. Docetaxel-resistant sub-lines were treated with different concentrations of decitabine. Global methylation and DNA methyltransferase (DNMT) activity was measured using an ELISA-based assay. Quantitative real-time PCR was used to study DNMT gene expression. Cell viability was studied by MTT assay. Global methylation was increased in MCF-7 but not significantly changed in MDA-MB-231 docetaxel-resistant cells. Decreased DNMT activity and decreased DNMT1 and DNMT3b mRNA expression was associated with docetaxel resistance in both cell lines. To investigate how the components of the DNA methylation machinery may contribute towards docetaxel resistance, decitabine (5-aza-2'-deoxycytidine), an inhibitor of DNA methylation, was used. Decitabine treatment decreased global methylation, DNMT activity and DNMT1, DNMT3a and DNMT3b mRNA expression in MDA-MB-231 docetaxel-resistant cells. In contrast, decitabine-treated MCF-7 docetaxel-resistant cells showed increased DNMT1, DNMT3a and DNMT3b mRNA expression indicating a cell line specific effect of decitabine. Decitabine treatment increased resistance in MCF-7 docetaxel-resistant cells and in the parental MCF-7 and MDA-MB231 docetaxel-sensitive cell lines, however, it did not alter response to docetaxel in MDA-MB-231 docetaxel-resistant cells. This study demonstrates that changes in the DNA methylation machinery are associated with resistance to docetaxel in breast cancer cells. The use of epigenetic therapies, as a strategy to overcome drug resistance, needs to be investigated more fully to determine their effectiveness in different cancers and for different chemotherapy drugs.",
keywords = "breast disease, mamamry gland diseases, cancer, malignant tumor , taxane derivatives, antimitotic, treatment, antineoplastic agent, cancerology, tumor cell, chemotherapy, human , treatment resistance, breast cancer, methylation, DNA , docetaxel",
author = "Lena Kastl and Iain Brown and Schofield, {Andrew C}",
year = "2010",
month = "5",
doi = "10.3892/ijo_00000607",
language = "English",
volume = "36",
pages = "1235--1241",
journal = "International Journal of Oncology",
issn = "1019-6439",
publisher = "Spandidos Publications",
number = "5",

}

TY - JOUR

T1 - Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells

AU - Kastl, Lena

AU - Brown, Iain

AU - Schofield, Andrew C

PY - 2010/5

Y1 - 2010/5

N2 - Docetaxel is an effective chemotherapy drug to treat breast cancer but the underlying molecular mechanisms of drug resistance are not fully understood. DNA methylation is an epigenetic event, involved in the control of gene expression, which is known to play an important role in cancer and chemotherapy drug resistance. To investigate the role of DNA methylation in docetaxel resistance in breast cancer we used two human breast cancer cell lines (MCF-7 and MDA-MB-231) that were made resistant to docetaxel. Docetaxel-resistant sub-lines were treated with different concentrations of decitabine. Global methylation and DNA methyltransferase (DNMT) activity was measured using an ELISA-based assay. Quantitative real-time PCR was used to study DNMT gene expression. Cell viability was studied by MTT assay. Global methylation was increased in MCF-7 but not significantly changed in MDA-MB-231 docetaxel-resistant cells. Decreased DNMT activity and decreased DNMT1 and DNMT3b mRNA expression was associated with docetaxel resistance in both cell lines. To investigate how the components of the DNA methylation machinery may contribute towards docetaxel resistance, decitabine (5-aza-2'-deoxycytidine), an inhibitor of DNA methylation, was used. Decitabine treatment decreased global methylation, DNMT activity and DNMT1, DNMT3a and DNMT3b mRNA expression in MDA-MB-231 docetaxel-resistant cells. In contrast, decitabine-treated MCF-7 docetaxel-resistant cells showed increased DNMT1, DNMT3a and DNMT3b mRNA expression indicating a cell line specific effect of decitabine. Decitabine treatment increased resistance in MCF-7 docetaxel-resistant cells and in the parental MCF-7 and MDA-MB231 docetaxel-sensitive cell lines, however, it did not alter response to docetaxel in MDA-MB-231 docetaxel-resistant cells. This study demonstrates that changes in the DNA methylation machinery are associated with resistance to docetaxel in breast cancer cells. The use of epigenetic therapies, as a strategy to overcome drug resistance, needs to be investigated more fully to determine their effectiveness in different cancers and for different chemotherapy drugs.

AB - Docetaxel is an effective chemotherapy drug to treat breast cancer but the underlying molecular mechanisms of drug resistance are not fully understood. DNA methylation is an epigenetic event, involved in the control of gene expression, which is known to play an important role in cancer and chemotherapy drug resistance. To investigate the role of DNA methylation in docetaxel resistance in breast cancer we used two human breast cancer cell lines (MCF-7 and MDA-MB-231) that were made resistant to docetaxel. Docetaxel-resistant sub-lines were treated with different concentrations of decitabine. Global methylation and DNA methyltransferase (DNMT) activity was measured using an ELISA-based assay. Quantitative real-time PCR was used to study DNMT gene expression. Cell viability was studied by MTT assay. Global methylation was increased in MCF-7 but not significantly changed in MDA-MB-231 docetaxel-resistant cells. Decreased DNMT activity and decreased DNMT1 and DNMT3b mRNA expression was associated with docetaxel resistance in both cell lines. To investigate how the components of the DNA methylation machinery may contribute towards docetaxel resistance, decitabine (5-aza-2'-deoxycytidine), an inhibitor of DNA methylation, was used. Decitabine treatment decreased global methylation, DNMT activity and DNMT1, DNMT3a and DNMT3b mRNA expression in MDA-MB-231 docetaxel-resistant cells. In contrast, decitabine-treated MCF-7 docetaxel-resistant cells showed increased DNMT1, DNMT3a and DNMT3b mRNA expression indicating a cell line specific effect of decitabine. Decitabine treatment increased resistance in MCF-7 docetaxel-resistant cells and in the parental MCF-7 and MDA-MB231 docetaxel-sensitive cell lines, however, it did not alter response to docetaxel in MDA-MB-231 docetaxel-resistant cells. This study demonstrates that changes in the DNA methylation machinery are associated with resistance to docetaxel in breast cancer cells. The use of epigenetic therapies, as a strategy to overcome drug resistance, needs to be investigated more fully to determine their effectiveness in different cancers and for different chemotherapy drugs.

KW - breast disease

KW - mamamry gland diseases

KW - cancer

KW - malignant tumor

KW - taxane derivatives

KW - antimitotic

KW - treatment

KW - antineoplastic agent

KW - cancerology

KW - tumor cell

KW - chemotherapy

KW - human

KW - treatment resistance

KW - breast cancer

KW - methylation

KW - DNA

KW - docetaxel

U2 - 10.3892/ijo_00000607

DO - 10.3892/ijo_00000607

M3 - Article

C2 - 20372798

VL - 36

SP - 1235

EP - 1241

JO - International Journal of Oncology

JF - International Journal of Oncology

SN - 1019-6439

IS - 5

ER -