Ammonia-oxidising archaea living at low pH: Insights from comparative genomics

Craig W. Herbold, Laura E. Lehtovirta-Morley, Man-Young Jung, Nico Jehmlich, Bela Hausmann, Ping Han, Alexander Loy, Michael Pester, Luis A. Sayavedra-Soto, Sung-Keun Rhee, James I. Prosser, Graeme W. Nicol, Michael Wagner, Cecile Gubry-Rangin

Research output: Contribution to journalArticle

20 Citations (Scopus)
14 Downloads (Pure)

Abstract

Obligate acidophilic members of the thaumarchaeotal genus Candidatus Nitrosotalea play an important role in nitrification in acidic soils, but their evolutionary and physiological adaptations to acidic environments are still poorly understood, with only a single member of this genus (Ca. N. devanaterra) having its genome sequenced. In this study, we sequenced the genomes of two additional cultured Ca. Nitrosotalea strains, extracted an almost complete Ca. Nitrosotalea metagenome-assembled genome from an acidic fen, and performed comparative genomics of the four Ca. Nitrosotalea genomes with 19 other archaeal ammonia oxidiser genomes. Average nucleotide and amino acid identities revealed that the four Ca. Nitrosotalea strains are not closely related to each other and represent separate species within the genus. The four Ca. Nitrosotalea genomes contained a core set of 103 orthologous gene families absent from all other ammonia-oxidizing archaea and, for most of these gene families, expression could be demonstrated in laboratory culture or the environment via proteomic or metatranscriptomic analyses, respectively. Interestingly, phylogenetic analyses of four of these core gene families clearly showed their acquisition by the Ca. Nitrosotalea common ancestor via horizontal gene transfer from Euryarchaeota of the order Thermoplasmatales. This order comprises acidophiles growing preferentially below pH 2 and, given the potential functional involvement in low pH adaptation of some of these laterally acquired genes, we hypothesize that gene exchange with these acidophiles contributed to the competitive success of the Ca. Nitrosotalea lineage in acidic environments.
Original languageEnglish
Pages (from-to)4939-4952
Number of pages14
JournalEnvironmental Microbiology
Volume19
Issue number12
Early online date4 Dec 2017
DOIs
Publication statusPublished - Dec 2017

Keywords

  • archaea
  • element cycles and biogeochemical processes
  • environmental genomics
  • evolution/evolutionary processes/gene transfer/mutation
  • genomics/functional genomics/comparative genomics

Fingerprint Dive into the research topics of 'Ammonia-oxidising archaea living at low pH: Insights from comparative genomics'. Together they form a unique fingerprint.

  • Cite this

    Herbold, C. W., Lehtovirta-Morley, L. E., Jung, M-Y., Jehmlich, N., Hausmann, B., Han, P., Loy, A., Pester, M., Sayavedra-Soto, L. A., Rhee, S-K., Prosser, J. I., Nicol, G. W., Wagner, M., & Gubry-Rangin, C. (2017). Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology, 19(12), 4939-4952. https://doi.org/10.1111/1462-2920.13971