An ecosystem-based natural capital evaluation framework that combines environmental and socio-economic implications of offshore renewable energy developments

Neda Trifonova* (Corresponding Author), Beth Scott, Robert Griffin (Collaborator), Shona Pennock (Collaborator), Henry Jeffrey (Collaborator)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy (ORE) developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g. bottom temperature), biological (e.g. net primary production) indicators and anthropogenic marine use (i.e. fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to ORE deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare.
Original languageEnglish
Article number 032005
JournalProgress in Energy
Volume4
Issue number3
DOIs
Publication statusPublished - 7 Jun 2022

Bibliographical note

Acknowledgments
This work was supported by the Supergen Offshore Renewable Energy (ORE) Hub, funded by the Engineering and Physical Sciences Research Council (EPSRC EP/S000747/1). Robert Griffin was supported by National Science Foundation grant CBET-2137701.

Data Availability Statement

No new data were created or analysed in this study.

Fingerprint

Dive into the research topics of 'An ecosystem-based natural capital evaluation framework that combines environmental and socio-economic implications of offshore renewable energy developments'. Together they form a unique fingerprint.

Cite this