An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals

Dameng Liu*, Zhuo Zou, Yidong Cai, Yongkai Qiu, Yingfang Zhou, Shan He

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Understanding the gas sorption behavior of coals not only benefits for enhancing coalbed methane (CBM) recovery but also provides important insights for simultaneous coal and gas extraction. This study aims to quantitatively evaluate the CH4 adsorption behaviors by a series of experiments and the applicability of different adsorption dynamic models in different rank coals (0.48?2.59% of Ro,m). Moreover, the isosteric heat and ultimate heat of CH4 adsorption in different rank coals were also analyzed. The results indicate that the fitting accuracy of different adsorption models is presented as Dubinin-Astakhov (D-A) model 0.15 MPa), the medium relative pressure stage (0.15?0.30 MPa), and the high relative pressure ( 0.30 MPa). As the relative pressure continuously increases, the adsorption mechanism changes from the collision stage between pore surface and CH4 molecules to the intermediate stage of monomolecular adsorption and the multilayer adsorption stage. Through calculating the isosteric heat and ultimate heat of CH4 adsorption, the adsorption heat generally increases with the adsorption capacity increasing, and shows a positive correlation with the micropore surface area. The effects of micropore structure and surface area on the adsorption heat should be crucial in coals. These results may be significant for understanding the process of CH4 adsorption.

Original languageEnglish
Article number103899
Number of pages13
JournalJournal of Natural Gas Science and Engineering
Early online date9 Mar 2021
Publication statusPublished - May 2021


  • Gas adsorption
  • Adsorption models
  • Isothermal adsorption
  • Isosteric heat
  • Coals

Cite this