Analytic signals and the transition to chaos in deterministic flows

Y C Lai, Ying-Cheng Lai

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The transition from regular to chaotic motions in deterministic flows is characterized by a change from a discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an infinite number of new Fourier modes. Given a system that generates a time series x(t), we study the transition to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to identify distinct analytic signals, we decompose the original time series x(t) into a finite number of modes that correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence that at the transition, there is no substantial change in the number of analytic signals characterizing x(t). Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms of analytic signals. [S1063-651X(98)50712-X].

Original languageEnglish
Pages (from-to)R6911-R6914
Number of pages4
JournalPhysical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume58
Issue number6
Publication statusPublished - Dec 1998

Keywords

  • TURBULENCE

Cite this

Analytic signals and the transition to chaos in deterministic flows. / Lai, Y C ; Lai, Ying-Cheng.

In: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 58, No. 6, 12.1998, p. R6911-R6914.

Research output: Contribution to journalArticle

@article{fc83e9f3ddf84575acee792638f3043a,
title = "Analytic signals and the transition to chaos in deterministic flows",
abstract = "The transition from regular to chaotic motions in deterministic flows is characterized by a change from a discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an infinite number of new Fourier modes. Given a system that generates a time series x(t), we study the transition to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to identify distinct analytic signals, we decompose the original time series x(t) into a finite number of modes that correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence that at the transition, there is no substantial change in the number of analytic signals characterizing x(t). Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms of analytic signals. [S1063-651X(98)50712-X].",
keywords = "TURBULENCE",
author = "Lai, {Y C} and Ying-Cheng Lai",
year = "1998",
month = "12",
language = "English",
volume = "58",
pages = "R6911--R6914",
journal = "Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics",
issn = "1063-651X",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Analytic signals and the transition to chaos in deterministic flows

AU - Lai, Y C

AU - Lai, Ying-Cheng

PY - 1998/12

Y1 - 1998/12

N2 - The transition from regular to chaotic motions in deterministic flows is characterized by a change from a discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an infinite number of new Fourier modes. Given a system that generates a time series x(t), we study the transition to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to identify distinct analytic signals, we decompose the original time series x(t) into a finite number of modes that correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence that at the transition, there is no substantial change in the number of analytic signals characterizing x(t). Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms of analytic signals. [S1063-651X(98)50712-X].

AB - The transition from regular to chaotic motions in deterministic flows is characterized by a change from a discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an infinite number of new Fourier modes. Given a system that generates a time series x(t), we study the transition to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to identify distinct analytic signals, we decompose the original time series x(t) into a finite number of modes that correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence that at the transition, there is no substantial change in the number of analytic signals characterizing x(t). Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms of analytic signals. [S1063-651X(98)50712-X].

KW - TURBULENCE

M3 - Article

VL - 58

SP - R6911-R6914

JO - Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

JF - Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

SN - 1063-651X

IS - 6

ER -