Abstract
In this paper, we present a semi-automatic system (Sherlock) for quiz generation using Linked Data and textual descriptions of RDF resources. Sherlock is distinguished from existing quiz generation systems in its ability to control the difficulty level of the generated quizzes. We cast the problem of perceiving the level of knowledge difficulty as a similarity measure problem and propose a novel hybrid semantic similarity measure using linked data. Extensive experiments show that the proposed similarity measure outperforms four strong baselines in both the pilot evaluation using a synthetic gold standard as well as with human evaluation, giving more than 47% gain in clustering accuracy over the baselines.
Original language | English |
---|---|
Title of host publication | Proceedings of The 8th International Conference on Knowledge Capture (K-Cap) |
Publisher | ACM |
Pages | 1-8 |
Number of pages | 8 |
ISBN (Print) | 978-1-4503-3849-3 |
DOIs | |
Publication status | Published - 2015 |
Event | K-CAP 2015 - The 8th International Conference on Knowledge Capture - USA, New York, United States Duration: 7 Oct 2015 → 10 Oct 2015 |
Conference
Conference | K-CAP 2015 - The 8th International Conference on Knowledge Capture |
---|---|
Country/Territory | United States |
City | New York |
Period | 7/10/15 → 10/10/15 |