Balancing risks of injury and disturbance to marine mammals when pile driving at offshore wind farms

Paul Thompson* (Corresponding Author), Isla M Graham, Barbara Cheney, Tim R. Barton, Adrian Farcas, Nathan D. Merchant

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
4 Downloads (Pure)


Offshore windfarms require construction procedures that minimise impacts on protected marine mammals. Uncertainty over the efficacy of existing guidelines for mitigating near-field injury when pile-driving recently resulted in the development of alternative measures, which integrated the routine deployment of acoustic deterrent devices (ADD) into engineering installation procedures without prior monitoring by Marine Mammal Observers.2. We conducted research around the installation of jacket foundations at the UK’s first deepwater offshore windfarm to address data gaps identified by regulators when consenting this newapproach. Specifically, we aimed to a) measure the relationship between noise levels and hammer energy to inform assessments of near-field injury zones, b) assess the efficacy of ADDs to disperse harbour porpoises from these zones.3. Distance from piling vessel had the biggest influence on received noise levels but, unexpectedly, received levels at any given distance were highest at low hammer energies. Modelling highlighted that this was because noise from pin pile installations was dominated bythe strong negative relationship with pile penetration depth with only a weak positive relationship with hammer energy.4. Acoustic detections of porpoises along a gradient of ADD exposure decreased in the 3-hours following a 15-minute ADD playback, with a 50% probability of response within 21.7 km. The Ecological Solutions & Evidence (In Press)minimum time to the first porpoise detection after playbacks was > 2 hours for sites within 1km of the playback.5. Our data suggest that the current regulatory focus on maximum hammer energies needs review, and future assessments of noise exposure should also consider foundation type. Despite higher piling noise levels than predicted, responses to ADD playback suggest mitigation was sufficiently conservative. Conversely, strong responses of porpoises to ADDs resulted in farfield disturbance beyond that required to mitigate injury. We recommend that risks to marine mammals can be further minimised by: 1) optimising ADD source signals and/or deployment schedules to minimise broad-scale disturbance; 2) minimising initial hammer energies whenreceived noise levels were highest; 3) extending the initial phase of soft start with minimum hammer energies and low blow rates.
Original languageEnglish
Article numbere12034
Number of pages12
JournalEcological Solutions and Evidence
Issue number2
Early online date29 Nov 2020
Publication statusPublished - 1 Dec 2020


  • Acoustic disturbance
  • behavioural response
  • cetaceans
  • Environmental risk assessment
  • harbour porpoise
  • Mitigation
  • Renewable energy
  • underwater noise


Dive into the research topics of 'Balancing risks of injury and disturbance to marine mammals when pile driving at offshore wind farms'. Together they form a unique fingerprint.

Cite this