Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland

Christian Haug Eide, Nick Schofield, Dougal A Jerram, John A. Howell

Research output: Contribution to journalArticle

35 Citations (Scopus)
27 Downloads (Pure)


Igneous sills are common components in rifted sedimentary basins globally. Much work has focussed on intrusions emplaced at relatively shallow paleodepths (0-1.5 km). However, due to constraints of reflection-seismic imaging and limited field-exposures, intrusions emplaced at deeper paleodepths (>1.5 km) within sedimentary basins are as not well-understood in regard to their emplacement-mechanisms and host-rock interactions. Results from a worldclass, seismic-scale outcrop of intruded Jurassic sedimentary rocks in East Greenland are presented here. Igneous intrusions and their host-rocks have been studied in the field and utilising a 22 km long “virtual outcrop” acquired using helicopter-mounted lidar. The results suggest the geometries of the deeply emplaced sills (c. 3 km) are dominantly controlled by host-rock lithology, sedimentology and cementation state. Sills favour mudstones and even exploit cm-scale mudstone-draped dune-foresets in otherwise homogeneous sandstones. Sills in poorly cemented intervals show clear ductile structures, in contrast to sills incemented units which only show brittle emplacement-structures. The studied host-rock is remarkably un-deformed despite intrusion. Volumetric expansion caused by the intrusions is almost exclusively accommodated by vertical jack-up of the overburden, on a 1:1 ratio, implying that intrusions may play a significant role in uplift of a basin if emplaced at deep basinal levels.
Original languageEnglish
Pages (from-to)23-40
Number of pages18
JournalJournal of the Geological Society
Issue number1
Early online date22 Jul 2016
Publication statusPublished - Jan 2017


  • petroleum geology
  • sedimentology
  • volcanology

Fingerprint Dive into the research topics of 'Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland'. Together they form a unique fingerprint.

  • Cite this