TY - JOUR
T1 - Bayesian joint models with INLA exploring marine mobile predator-prey and competitor species habitat overlap
AU - Sadykova, Dinara
AU - Scott, Beth E
AU - Dominicis, Michela De
AU - Wakelin, Sarah L.
AU - Sadykov, Alexander
AU - Wolf, Judith
N1 - EPSRC grant Ecowatt 2050 EP/K012851/1
ACKNOWLEDGMENTS
We would like to thank the associate editor and the anonymous reviewers for their useful and constructive suggestions which led to a considerable improvement of the manuscript. The authors would also like to thank the following people/organizations for making large datasets available for use in this paper: Mark Lewis (Joint Nature Conservation Committee), Philip Hammond (Scottish Oceans Institute, University of St. Andrews), Susan Lusseau (Marine Scotland Science), Darren Stevens (The Sir Alister Hardy Foundation for Ocean Science, PML), and Yuri Artioli (Plymouth Marine Laboratory). This work was supported by the Engineering and Physical Sciences Research Council (EcoWatt250; EPSRC EP/K012851/1).
PY - 2017/7
Y1 - 2017/7
N2 - Understanding spatial physical habitat selection driven by competition and/or predator–prey interactions of mobile marine species is a fundamental goal of spatial ecology. However, spatial counts or density data for highly mobile animals often (1) include excess zeros, (2) have spatial correlation, and (3) have highly nonlinear relationships with physical habitat variables, which results in the need for complex joint spatial models. In this paper, we test the use of Bayesian hierarchical hurdle and zero-inflated joint models with integrated nested Laplace approximation (INLA), to fit complex joint models to spatial patterns of eight mobile marine species (grey seal, harbor seal, harbor porpoise, common guillemot, black-legged kittiwake, northern gannet, herring, and sandeels). For each joint model, we specified nonlinear smoothed effect of physical habitat covariates and selected either competing species or predator–prey interactions. Out of a range of six ecologically important physical and biologic variables that are predicted to change with climate change and large-scale energy extraction, we identified the most important habitat variables for each species and present the relationships between these bio/physical variables and species distributions. In particular, we found that net primary production played a significant role in determining habitat preferences of all the selected mobile marine species. We have shown that the INLA method is well-suited for modeling spatially correlated data with excessive zeros and is an efficient approach to fit complex joint spatial models with nonlinear effects of covariates. Our approach has demonstrated its ability to define joint habitat selection for both competing and prey–predator species that can be relevant to numerous issues in the management and conservation of mobile marine species.
AB - Understanding spatial physical habitat selection driven by competition and/or predator–prey interactions of mobile marine species is a fundamental goal of spatial ecology. However, spatial counts or density data for highly mobile animals often (1) include excess zeros, (2) have spatial correlation, and (3) have highly nonlinear relationships with physical habitat variables, which results in the need for complex joint spatial models. In this paper, we test the use of Bayesian hierarchical hurdle and zero-inflated joint models with integrated nested Laplace approximation (INLA), to fit complex joint models to spatial patterns of eight mobile marine species (grey seal, harbor seal, harbor porpoise, common guillemot, black-legged kittiwake, northern gannet, herring, and sandeels). For each joint model, we specified nonlinear smoothed effect of physical habitat covariates and selected either competing species or predator–prey interactions. Out of a range of six ecologically important physical and biologic variables that are predicted to change with climate change and large-scale energy extraction, we identified the most important habitat variables for each species and present the relationships between these bio/physical variables and species distributions. In particular, we found that net primary production played a significant role in determining habitat preferences of all the selected mobile marine species. We have shown that the INLA method is well-suited for modeling spatially correlated data with excessive zeros and is an efficient approach to fit complex joint spatial models with nonlinear effects of covariates. Our approach has demonstrated its ability to define joint habitat selection for both competing and prey–predator species that can be relevant to numerous issues in the management and conservation of mobile marine species.
KW - Besag models
KW - bio-physical habitats
KW - hurdle models
KW - integrated nested Laplace approximation
KW - mobile marine species
KW - spatial joint modeling
KW - spatial niche selection
KW - stochastic partial differential equations
KW - zero-inflated models
U2 - 10.1002/ece3.3081
DO - 10.1002/ece3.3081
M3 - Article
VL - 7
SP - 5212
EP - 5226
JO - Ecology and Evolution
JF - Ecology and Evolution
SN - 2045-7758
IS - 14
ER -