TY - JOUR
T1 - Blockchain based hybrid network architecture for the smart city
AU - Sharma, Pradip Kumar
AU - Park, Jong Hyuk
N1 - This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No 2016R1A2B4011069).
PY - 2018/9
Y1 - 2018/9
N2 - Recently, the concept of “Smart Cities” has developed considerably with the rise and development of the Internet of Things as new form of sustainable development. Smart cities are based on autonomous and distributed infrastructure that includes intelligent information processing and control systems heterogeneous network infrastructure, and ubiquitous sensing involving millions of information sources Due to the continued growth of data volume and number of connected IoT devices, however, issues such as high latency, bandwidth bottlenecks, security and privacy, and scalability arise in the current smart city network architecture. Designing an efficient, secure, and scalable distributed architecture by bringing computational and storage resources closer to endpoints is needed to address the limitations of today's smart city network. In this paper, we propose a novel hybrid network architecture for the smart city by leveraging the strength of emerging Software Defined Networking and blockchain technologies. To achieve efficiency and address the current limitations, our architecture is divided into two parts: core network and edge network. Through the design of a hybrid architecture, our proposed architecture inherits the strength of both centralized and distributed network architectures. We also propose a Proof-of-Work scheme in our model to ensure security and privacy. To evaluate the feasibility and performance of our proposed model, we simulate our model and evaluate it based on various performance metrics. The result of the evaluation shows the effectiveness of our proposed model.
AB - Recently, the concept of “Smart Cities” has developed considerably with the rise and development of the Internet of Things as new form of sustainable development. Smart cities are based on autonomous and distributed infrastructure that includes intelligent information processing and control systems heterogeneous network infrastructure, and ubiquitous sensing involving millions of information sources Due to the continued growth of data volume and number of connected IoT devices, however, issues such as high latency, bandwidth bottlenecks, security and privacy, and scalability arise in the current smart city network architecture. Designing an efficient, secure, and scalable distributed architecture by bringing computational and storage resources closer to endpoints is needed to address the limitations of today's smart city network. In this paper, we propose a novel hybrid network architecture for the smart city by leveraging the strength of emerging Software Defined Networking and blockchain technologies. To achieve efficiency and address the current limitations, our architecture is divided into two parts: core network and edge network. Through the design of a hybrid architecture, our proposed architecture inherits the strength of both centralized and distributed network architectures. We also propose a Proof-of-Work scheme in our model to ensure security and privacy. To evaluate the feasibility and performance of our proposed model, we simulate our model and evaluate it based on various performance metrics. The result of the evaluation shows the effectiveness of our proposed model.
KW - Blockchain
KW - Internet of Things
KW - Smart city
KW - Software Defined Networking
UR - http://www.scopus.com/inward/record.url?scp=85046638979&partnerID=8YFLogxK
U2 - 10.1016/j.future.2018.04.060
DO - 10.1016/j.future.2018.04.060
M3 - Article
AN - SCOPUS:85046638979
VL - 86
SP - 650
EP - 655
JO - Future Generation Computer Systems
JF - Future Generation Computer Systems
SN - 0167-739X
ER -