TY - JOUR
T1 - Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone
AU - Speakman, J. R.
AU - Mitchell, S. E.
AU - Mazidi, M.
N1 - Acknowledgements
JRS was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB13030000), a ‘1000 talents’ professorship from the Ministry of Science and Technology (MOST) of the Chinese government, and a Wolfson award from the Royal Society. SEM was supported by the US National Institute of Health grant R01AG043972 and MM was supported by a TWAS studentship of the Chinese Academy of Sciences, during the preparation of this manuscript. We are grateful to three anonymous referees for their constructive and helpful comments.
PY - 2016/12/15
Y1 - 2016/12/15
N2 - Almost exactly 100. years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be called dietary or caloric dilution, rather than dietary or caloric restriction, to distinguish these potentially important methodological differences.
AB - Almost exactly 100. years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be called dietary or caloric dilution, rather than dietary or caloric restriction, to distinguish these potentially important methodological differences.
KW - Calorie restriction
KW - Dietary restriction
KW - Food restriction
KW - Geometric framework
KW - Nutritional geometry
KW - Protein restriction
UR - http://www.scopus.com/inward/record.url?scp=84961917296&partnerID=8YFLogxK
U2 - 10.1016/j.exger.2016.03.011
DO - 10.1016/j.exger.2016.03.011
M3 - Article
AN - SCOPUS:84961917296
VL - 86
SP - 28
EP - 38
JO - Experimental Gerontology
JF - Experimental Gerontology
SN - 0531-5565
ER -