Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease

Aitor G Granja, Jason W. Holland, Jaime Pignatelli, Christopher J Secombes, Carolina Tafalla (Corresponding Author)

Research output: Contribution to journalArticle

8 Citations (Scopus)
4 Downloads (Pure)

Abstract

Proliferative kidney disease (PKD) is a parasitic infection of salmonid fish characterized by hyper-secretion of immunoglobulins in response to the presence of the myxozoan parasite, Tetracapsuloides bryosalmonae. In this context, we hypothesized that the BAFF/APRIL axis, known to play a major role in B cell differentiation and survival in mammals, could be affected by the parasite and consequently be involved in the apparent shift in normal B cell activity. To regulate B cell activity, BAFF and APRIL bind to transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA), whereas BAFF also binds to BAFF receptor (BAFF-R). In teleost fish, although some BAFF and APRIL sequences have been reported, their receptors have not been identified. Thus, as a first step in the current work, we have identified homologues to mammalian TACI, BCMA and BAFF-R in rainbow trout (Oncorhynchus mykiss), that constitute the first report of BAFF and APRIL receptor sequences in fish. Subsequently we studied the transcriptional modulation of BAFF, APRIL, and the fish-specific related cytokine, BALM and their putative receptors in fish naturally exposed to T. bryosalmonae. Finally, to gain further insights on the functional role that these cytokines play during the course of PKD, we have studied their effect on the survival of kidney IgM+ B cells and on immunoglobulin transcription. Our results support the premise that the BAFF / APRIL axis could play an important role during PKD, which may open the possibility of new therapeutic treatments against the disease.
Original languageEnglish
Article numbere0174249
JournalPloS ONE
Volume12
Issue number3
DOIs
Publication statusPublished - 21 Mar 2017

Fingerprint

Oncorhynchus mykiss
Kidney Diseases
kidney diseases
B-Cell Activation Factor Receptor
Fish
B-lymphocytes
Fishes
pathogenesis
B-Cell Maturation Antigen
B-Lymphocytes
receptors
Cells
fish
Immunoglobulins
Parasites
immunoglobulins
Cytokines
Cyclophilins
cytokines
B-Cell Antigen Receptors

Cite this

Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease. / Granja, Aitor G; Holland, Jason W.; Pignatelli, Jaime ; Secombes, Christopher J; Tafalla, Carolina (Corresponding Author).

In: PloS ONE, Vol. 12, No. 3, e0174249, 21.03.2017.

Research output: Contribution to journalArticle

@article{f799382cf3c9433caaf55f90f5c4b859,
title = "Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease",
abstract = "Proliferative kidney disease (PKD) is a parasitic infection of salmonid fish characterized by hyper-secretion of immunoglobulins in response to the presence of the myxozoan parasite, Tetracapsuloides bryosalmonae. In this context, we hypothesized that the BAFF/APRIL axis, known to play a major role in B cell differentiation and survival in mammals, could be affected by the parasite and consequently be involved in the apparent shift in normal B cell activity. To regulate B cell activity, BAFF and APRIL bind to transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA), whereas BAFF also binds to BAFF receptor (BAFF-R). In teleost fish, although some BAFF and APRIL sequences have been reported, their receptors have not been identified. Thus, as a first step in the current work, we have identified homologues to mammalian TACI, BCMA and BAFF-R in rainbow trout (Oncorhynchus mykiss), that constitute the first report of BAFF and APRIL receptor sequences in fish. Subsequently we studied the transcriptional modulation of BAFF, APRIL, and the fish-specific related cytokine, BALM and their putative receptors in fish naturally exposed to T. bryosalmonae. Finally, to gain further insights on the functional role that these cytokines play during the course of PKD, we have studied their effect on the survival of kidney IgM+ B cells and on immunoglobulin transcription. Our results support the premise that the BAFF / APRIL axis could play an important role during PKD, which may open the possibility of new therapeutic treatments against the disease.",
author = "Granja, {Aitor G} and Holland, {Jason W.} and Jaime Pignatelli and Secombes, {Christopher J} and Carolina Tafalla",
note = "We would like to thank Lucia Gonz{\'a}lez for technical assistance and Rosario Castro for producing some of the cDNAs used in this study. This work was supported by the European Research Council (ERC Starting Grant 2011 280469) and by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH) and under the Horizon H2020 research and innovation programme (Grant H2020-634429 ParaFishControl). This work was also partially funded by project AGL2014-54456-JIN from the Spanish Ministry of Economy and Competitiveness (MINECO). JWH was supported by the Swiss National Science Foundation (grant reference CRSII3_147649-1).",
year = "2017",
month = "3",
day = "21",
doi = "10.1371/journal.pone.0174249",
language = "English",
volume = "12",
journal = "PloS ONE",
issn = "1932-6203",
publisher = "PUBLIC LIBRARY SCIENCE",
number = "3",

}

TY - JOUR

T1 - Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease

AU - Granja, Aitor G

AU - Holland, Jason W.

AU - Pignatelli, Jaime

AU - Secombes, Christopher J

AU - Tafalla, Carolina

N1 - We would like to thank Lucia González for technical assistance and Rosario Castro for producing some of the cDNAs used in this study. This work was supported by the European Research Council (ERC Starting Grant 2011 280469) and by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH) and under the Horizon H2020 research and innovation programme (Grant H2020-634429 ParaFishControl). This work was also partially funded by project AGL2014-54456-JIN from the Spanish Ministry of Economy and Competitiveness (MINECO). JWH was supported by the Swiss National Science Foundation (grant reference CRSII3_147649-1).

PY - 2017/3/21

Y1 - 2017/3/21

N2 - Proliferative kidney disease (PKD) is a parasitic infection of salmonid fish characterized by hyper-secretion of immunoglobulins in response to the presence of the myxozoan parasite, Tetracapsuloides bryosalmonae. In this context, we hypothesized that the BAFF/APRIL axis, known to play a major role in B cell differentiation and survival in mammals, could be affected by the parasite and consequently be involved in the apparent shift in normal B cell activity. To regulate B cell activity, BAFF and APRIL bind to transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA), whereas BAFF also binds to BAFF receptor (BAFF-R). In teleost fish, although some BAFF and APRIL sequences have been reported, their receptors have not been identified. Thus, as a first step in the current work, we have identified homologues to mammalian TACI, BCMA and BAFF-R in rainbow trout (Oncorhynchus mykiss), that constitute the first report of BAFF and APRIL receptor sequences in fish. Subsequently we studied the transcriptional modulation of BAFF, APRIL, and the fish-specific related cytokine, BALM and their putative receptors in fish naturally exposed to T. bryosalmonae. Finally, to gain further insights on the functional role that these cytokines play during the course of PKD, we have studied their effect on the survival of kidney IgM+ B cells and on immunoglobulin transcription. Our results support the premise that the BAFF / APRIL axis could play an important role during PKD, which may open the possibility of new therapeutic treatments against the disease.

AB - Proliferative kidney disease (PKD) is a parasitic infection of salmonid fish characterized by hyper-secretion of immunoglobulins in response to the presence of the myxozoan parasite, Tetracapsuloides bryosalmonae. In this context, we hypothesized that the BAFF/APRIL axis, known to play a major role in B cell differentiation and survival in mammals, could be affected by the parasite and consequently be involved in the apparent shift in normal B cell activity. To regulate B cell activity, BAFF and APRIL bind to transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA), whereas BAFF also binds to BAFF receptor (BAFF-R). In teleost fish, although some BAFF and APRIL sequences have been reported, their receptors have not been identified. Thus, as a first step in the current work, we have identified homologues to mammalian TACI, BCMA and BAFF-R in rainbow trout (Oncorhynchus mykiss), that constitute the first report of BAFF and APRIL receptor sequences in fish. Subsequently we studied the transcriptional modulation of BAFF, APRIL, and the fish-specific related cytokine, BALM and their putative receptors in fish naturally exposed to T. bryosalmonae. Finally, to gain further insights on the functional role that these cytokines play during the course of PKD, we have studied their effect on the survival of kidney IgM+ B cells and on immunoglobulin transcription. Our results support the premise that the BAFF / APRIL axis could play an important role during PKD, which may open the possibility of new therapeutic treatments against the disease.

U2 - 10.1371/journal.pone.0174249

DO - 10.1371/journal.pone.0174249

M3 - Article

VL - 12

JO - PloS ONE

JF - PloS ONE

SN - 1932-6203

IS - 3

M1 - e0174249

ER -