TY - JOUR
T1 - Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration
AU - Gao, Bing
AU - Huang, Tao
AU - Ju, Xiaotang
AU - Gu, Baojing
AU - Huang, Wei
AU - Xu, Lilai
AU - Rees, Robert M.
AU - Powlson, David S.
AU - Smith, Pete
AU - Cui, Shenghui
N1 - This work was funded by National Basic Research Program of China (2014CB953800), Young Talents Projects of the Institute of Urban Environment, Chinese Academy of Sciences (IUEMS201402), National Natural Science Foundation of China (41471190, 41301237, 71704171), China Postdoctoral Science Foundation (2014T70144) and Discovery Early Career Researcher Award of the Australian Research Council (DE170100423). The work contributes to the UK-China Virtual Joint Centres on Nitrogen “N-Circle” and “CINAg” funded by the Newton Fund via UK BBSRC/NERC (grants BB/N013484/1 and BB/N013468/1, respectively).
PY - 2018/12
Y1 - 2018/12
N2 - Soil carbon sequestration is being considered as a potential pathway to mitigate climate change. Cropland soils could provide a sink for carbon that can be modified by farming practices, however, they can also act as a source of greenhouse gases (GHG), including not only nitrous oxide (N2O) and methane (CH4), but also the upstream carbon dioxide (CO2) emissions associated with agronomic management. These latter emissions are also sometimes termed “hidden” or “embedded” CO2. In this paper, we estimated the net GHG balance for Chinese cropping systems by considering the balance of soil carbon sequestration, N2O and CH4 emissions, and the upstream CO2 emissions of agronomic management from a life cycle perspective during 2000–2017. Results showed that although soil organic carbon (SOC) increased by 23.2±8.6 Tg C yr-1, the soil N2O and CH4 emissions plus upstream CO2 emissions arising from agronomic management added 269.5±21.1 Tg C-eq yr-1 to the atmosphere. These findings demonstrate that Chinese cropping systems are a net source of GHG emissions, and that total GHG emissions are about 12 times larger than carbon uptake by soil sequestration. There were large variations between different cropping systems in the net GHG balance ranging from 328 to 7567 kg C-eq ha-1 yr-1, but all systems act as a net GHG source to the atmosphere. The main sources of total GHG emissions are nitrogen fertilization (emissions during production and application), power use for irrigation, and soil N2O and CH4 emissions. Optimizing agronomic management practices, especially fertilization, irrigation, plastic mulching, and crop residues to reduce total GHG emissions from the whole chain is urgently required in order to develop a low carbon future for Chinese crop production.
AB - Soil carbon sequestration is being considered as a potential pathway to mitigate climate change. Cropland soils could provide a sink for carbon that can be modified by farming practices, however, they can also act as a source of greenhouse gases (GHG), including not only nitrous oxide (N2O) and methane (CH4), but also the upstream carbon dioxide (CO2) emissions associated with agronomic management. These latter emissions are also sometimes termed “hidden” or “embedded” CO2. In this paper, we estimated the net GHG balance for Chinese cropping systems by considering the balance of soil carbon sequestration, N2O and CH4 emissions, and the upstream CO2 emissions of agronomic management from a life cycle perspective during 2000–2017. Results showed that although soil organic carbon (SOC) increased by 23.2±8.6 Tg C yr-1, the soil N2O and CH4 emissions plus upstream CO2 emissions arising from agronomic management added 269.5±21.1 Tg C-eq yr-1 to the atmosphere. These findings demonstrate that Chinese cropping systems are a net source of GHG emissions, and that total GHG emissions are about 12 times larger than carbon uptake by soil sequestration. There were large variations between different cropping systems in the net GHG balance ranging from 328 to 7567 kg C-eq ha-1 yr-1, but all systems act as a net GHG source to the atmosphere. The main sources of total GHG emissions are nitrogen fertilization (emissions during production and application), power use for irrigation, and soil N2O and CH4 emissions. Optimizing agronomic management practices, especially fertilization, irrigation, plastic mulching, and crop residues to reduce total GHG emissions from the whole chain is urgently required in order to develop a low carbon future for Chinese crop production.
KW - Agronomic management
KW - Upstream CO2 emissions
KW - Life cycle analysis
KW - Net greenhouse gas balance
KW - N2O and CH4 emission
KW - Soil organic carbon
U2 - 10.1111/gcb.14425
DO - 10.1111/gcb.14425
M3 - Article
VL - 24
SP - 5590
EP - 5606
JO - Global Change Biology
JF - Global Change Biology
SN - 1354-1013
IS - 12
ER -