Circannual and circadian rhythms of hypothalamic DNA methyltransferase and histone deacetylase expression in male Siberian hamsters (Phodopus sungorus)

Tyler J Stevenson (Corresponding Author)

Research output: Contribution to journalArticle

14 Citations (Scopus)
4 Downloads (Pure)

Abstract

Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5-6 weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.
Original languageEnglish
Pages (from-to)130–137
Number of pages8
JournalGeneral and Comparative Endocrinology
Volume243
Early online date1 Dec 2016
DOIs
Publication statusPublished - 1 Mar 2017

Keywords

  • epigenetic
  • methylation
  • acetylation
  • plasticity
  • seasonal

Fingerprint Dive into the research topics of 'Circannual and circadian rhythms of hypothalamic DNA methyltransferase and histone deacetylase expression in male Siberian hamsters (<i>Phodopus sungorus</i>)'. Together they form a unique fingerprint.

  • Cite this