Climate-related changes in peatland carbon accumulation during the last millennium

D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer & 22 others Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, Y. Zhao

Research output: Contribution to journalArticle

5 Downloads (Pure)

Abstract

Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declines over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands.
Original languageEnglish
Pages (from-to)14327-14364
Number of pages38
JournalBiogeosciences Discussions
Volume9
Issue number10
DOIs
Publication statusPublished - 17 Oct 2012

Fingerprint

peatlands
peatland
climate
carbon
carbon cycle
Little Ice Age
carbon sequestration
carbon sinks
peat
primary productivity
ice
productivity
permafrost
carbon sink
Medieval
photosynthetically active radiation
accumulation rate
cloud cover
global warming
methane

Cite this

Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., ... Zhao, Y. (2012). Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences Discussions, 9(10), 14327-14364. https://doi.org/10.5194/bgd-9-14327-2012

Climate-related changes in peatland carbon accumulation during the last millennium. / Charman, D. J.; Beilman, D. W.; Blaauw, M.; Booth, R. K.; Brewer, S.; Chambers, F. M.; Christen, J. A.; Gallego-Sala, A.; Harrison, S. P.; Hughes, P. D. M.; Jackson, S. T.; Korhola, A.; Mauquoy, D.; Mitchell, F. J. G.; Prentice, I. C.; van der Linden, M.; De Vleeschouwer, F.; Yu, Z. C.; Alm, J.; Bauer, I. E.; Corish, Y. M. C.; Garneau, M.; Hohl, V.; Huang, Y.; Karofeld, E.; Le Roux, G.; Loisel, J.; Moschen, R.; Nichols, J. E.; Nieminen, T. M.; MacDonald, G. M.; Phadtare, N. R.; Rausch, N.; Sillasoo, Ü.; Swindles, G. T.; Tuittila, E.-S.; Ukonmaanaho, L.; Väliranta, M.; van Bellen, S.; van Geel, B.; Vitt, D. H.; Zhao, Y.

In: Biogeosciences Discussions, Vol. 9, No. 10, 17.10.2012, p. 14327-14364.

Research output: Contribution to journalArticle

Charman, DJ, Beilman, DW, Blaauw, M, Booth, RK, Brewer, S, Chambers, FM, Christen, JA, Gallego-Sala, A, Harrison, SP, Hughes, PDM, Jackson, ST, Korhola, A, Mauquoy, D, Mitchell, FJG, Prentice, IC, van der Linden, M, De Vleeschouwer, F, Yu, ZC, Alm, J, Bauer, IE, Corish, YMC, Garneau, M, Hohl, V, Huang, Y, Karofeld, E, Le Roux, G, Loisel, J, Moschen, R, Nichols, JE, Nieminen, TM, MacDonald, GM, Phadtare, NR, Rausch, N, Sillasoo, Ü, Swindles, GT, Tuittila, E-S, Ukonmaanaho, L, Väliranta, M, van Bellen, S, van Geel, B, Vitt, DH & Zhao, Y 2012, 'Climate-related changes in peatland carbon accumulation during the last millennium', Biogeosciences Discussions, vol. 9, no. 10, pp. 14327-14364. https://doi.org/10.5194/bgd-9-14327-2012
Charman DJ, Beilman DW, Blaauw M, Booth RK, Brewer S, Chambers FM et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences Discussions. 2012 Oct 17;9(10):14327-14364. https://doi.org/10.5194/bgd-9-14327-2012
Charman, D. J. ; Beilman, D. W. ; Blaauw, M. ; Booth, R. K. ; Brewer, S. ; Chambers, F. M. ; Christen, J. A. ; Gallego-Sala, A. ; Harrison, S. P. ; Hughes, P. D. M. ; Jackson, S. T. ; Korhola, A. ; Mauquoy, D. ; Mitchell, F. J. G. ; Prentice, I. C. ; van der Linden, M. ; De Vleeschouwer, F. ; Yu, Z. C. ; Alm, J. ; Bauer, I. E. ; Corish, Y. M. C. ; Garneau, M. ; Hohl, V. ; Huang, Y. ; Karofeld, E. ; Le Roux, G. ; Loisel, J. ; Moschen, R. ; Nichols, J. E. ; Nieminen, T. M. ; MacDonald, G. M. ; Phadtare, N. R. ; Rausch, N. ; Sillasoo, Ü. ; Swindles, G. T. ; Tuittila, E.-S. ; Ukonmaanaho, L. ; Väliranta, M. ; van Bellen, S. ; van Geel, B. ; Vitt, D. H. ; Zhao, Y. / Climate-related changes in peatland carbon accumulation during the last millennium. In: Biogeosciences Discussions. 2012 ; Vol. 9, No. 10. pp. 14327-14364.
@article{359c1ec8ac374ce5b9bff2a68a6deabd,
title = "Climate-related changes in peatland carbon accumulation during the last millennium",
abstract = "Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declines over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands.",
author = "Charman, {D. J.} and Beilman, {D. W.} and M. Blaauw and Booth, {R. K.} and S. Brewer and Chambers, {F. M.} and Christen, {J. A.} and A. Gallego-Sala and Harrison, {S. P.} and Hughes, {P. D. M.} and Jackson, {S. T.} and A. Korhola and D. Mauquoy and Mitchell, {F. J. G.} and Prentice, {I. C.} and {van der Linden}, M. and {De Vleeschouwer}, F. and Yu, {Z. C.} and J. Alm and Bauer, {I. E.} and Corish, {Y. M. C.} and M. Garneau and V. Hohl and Y. Huang and E. Karofeld and {Le Roux}, G. and J. Loisel and R. Moschen and Nichols, {J. E.} and Nieminen, {T. M.} and MacDonald, {G. M.} and Phadtare, {N. R.} and N. Rausch and {\"U}. Sillasoo and Swindles, {G. T.} and E.-S. Tuittila and L. Ukonmaanaho and M. V{\"a}liranta and {van Bellen}, S. and {van Geel}, B. and Vitt, {D. H.} and Y. Zhao",
year = "2012",
month = "10",
day = "17",
doi = "10.5194/bgd-9-14327-2012",
language = "English",
volume = "9",
pages = "14327--14364",
journal = "Biogeosciences Discussions",
issn = "1810-6277",
publisher = "European Geosciences Union",
number = "10",

}

TY - JOUR

T1 - Climate-related changes in peatland carbon accumulation during the last millennium

AU - Charman, D. J.

AU - Beilman, D. W.

AU - Blaauw, M.

AU - Booth, R. K.

AU - Brewer, S.

AU - Chambers, F. M.

AU - Christen, J. A.

AU - Gallego-Sala, A.

AU - Harrison, S. P.

AU - Hughes, P. D. M.

AU - Jackson, S. T.

AU - Korhola, A.

AU - Mauquoy, D.

AU - Mitchell, F. J. G.

AU - Prentice, I. C.

AU - van der Linden, M.

AU - De Vleeschouwer, F.

AU - Yu, Z. C.

AU - Alm, J.

AU - Bauer, I. E.

AU - Corish, Y. M. C.

AU - Garneau, M.

AU - Hohl, V.

AU - Huang, Y.

AU - Karofeld, E.

AU - Le Roux, G.

AU - Loisel, J.

AU - Moschen, R.

AU - Nichols, J. E.

AU - Nieminen, T. M.

AU - MacDonald, G. M.

AU - Phadtare, N. R.

AU - Rausch, N.

AU - Sillasoo, Ü.

AU - Swindles, G. T.

AU - Tuittila, E.-S.

AU - Ukonmaanaho, L.

AU - Väliranta, M.

AU - van Bellen, S.

AU - van Geel, B.

AU - Vitt, D. H.

AU - Zhao, Y.

PY - 2012/10/17

Y1 - 2012/10/17

N2 - Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declines over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands.

AB - Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declines over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands.

U2 - 10.5194/bgd-9-14327-2012

DO - 10.5194/bgd-9-14327-2012

M3 - Article

VL - 9

SP - 14327

EP - 14364

JO - Biogeosciences Discussions

JF - Biogeosciences Discussions

SN - 1810-6277

IS - 10

ER -