Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates

David B. Kemp, Peter M. Sadler

Research output: Contribution to journalArticle

16 Citations (Scopus)
3 Downloads (Pure)

Abstract

Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter-related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19 000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea-level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sea-level by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea-level rise. Differences between the rates of carbonate accumulation and sea-level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give-up mode) pervasive during peak Early Holocene sea-level rise, followed by a switch to catch-up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over time spans much greater than 100 kyr, and at these time spans, rates primarily reflect long-term tectonically mediated accommodation space changes rather than shorter term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, tempers the utility of this and other compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.

Original languageEnglish
Pages (from-to)1286-1297
Number of pages12
JournalSedimentology
Volume61
Issue number5
Early online date26 Mar 2014
DOIs
Publication statusPublished - Aug 2014

Fingerprint

accumulation rate
carbonate
eustacy
geological time
climate
Holocene
sea level
timescale
geological record
carbonate platform
Phanerozoic
Last Glacial Maximum
sea level change

Keywords

  • Accumulation rate
  • Carbonates
  • Climate
  • Eustasy
  • Holocene

ASJC Scopus subject areas

  • Geology
  • Stratigraphy

Cite this

Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates. / Kemp, David B.; Sadler, Peter M.

In: Sedimentology, Vol. 61, No. 5, 08.2014, p. 1286-1297.

Research output: Contribution to journalArticle

Kemp, David B. ; Sadler, Peter M. / Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates. In: Sedimentology. 2014 ; Vol. 61, No. 5. pp. 1286-1297.
@article{ae7f0c53e0884e79a17ded0b78b72795,
title = "Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates",
abstract = "Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter-related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19 000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea-level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sea-level by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea-level rise. Differences between the rates of carbonate accumulation and sea-level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give-up mode) pervasive during peak Early Holocene sea-level rise, followed by a switch to catch-up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over time spans much greater than 100 kyr, and at these time spans, rates primarily reflect long-term tectonically mediated accommodation space changes rather than shorter term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, tempers the utility of this and other compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.",
keywords = "Accumulation rate, Carbonates, Climate, Eustasy, Holocene",
author = "Kemp, {David B.} and Sadler, {Peter M.}",
year = "2014",
month = "8",
doi = "10.1111/sed.12112",
language = "English",
volume = "61",
pages = "1286--1297",
journal = "Sedimentology",
issn = "0037-0746",
publisher = "Wiley-Blackwell",
number = "5",

}

TY - JOUR

T1 - Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates

AU - Kemp, David B.

AU - Sadler, Peter M.

PY - 2014/8

Y1 - 2014/8

N2 - Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter-related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19 000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea-level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sea-level by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea-level rise. Differences between the rates of carbonate accumulation and sea-level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give-up mode) pervasive during peak Early Holocene sea-level rise, followed by a switch to catch-up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over time spans much greater than 100 kyr, and at these time spans, rates primarily reflect long-term tectonically mediated accommodation space changes rather than shorter term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, tempers the utility of this and other compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.

AB - Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter-related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19 000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea-level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sea-level by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea-level rise. Differences between the rates of carbonate accumulation and sea-level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give-up mode) pervasive during peak Early Holocene sea-level rise, followed by a switch to catch-up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over time spans much greater than 100 kyr, and at these time spans, rates primarily reflect long-term tectonically mediated accommodation space changes rather than shorter term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, tempers the utility of this and other compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.

KW - Accumulation rate

KW - Carbonates

KW - Climate

KW - Eustasy

KW - Holocene

UR - http://www.scopus.com/inward/record.url?scp=84904357430&partnerID=8YFLogxK

U2 - 10.1111/sed.12112

DO - 10.1111/sed.12112

M3 - Article

AN - SCOPUS:84904357430

VL - 61

SP - 1286

EP - 1297

JO - Sedimentology

JF - Sedimentology

SN - 0037-0746

IS - 5

ER -