TY - JOUR
T1 - Computer-aided image geometry analysis and subset selection for optimizing texture quality in photorealistic models
AU - Sima, Aleksandra Anna
AU - Bonaventura, Xavier
AU - Feixas, Miquel
AU - Sbert, Mateu
AU - Howell, John Anthony
AU - Viola, Ivan
AU - Buckley, Simon John
N1 - Funding Information:
This work is supported by the Research Council of Norway’s Petromaks programme, with support from FORCE (grant 193059 ) and the Statoil Academia Agreement (grant 200512 ). A. Rittersbacher is thanked for documenting the manually selected image sets. Riegl GmbH is thanked for providing continued software support. This work has been partially supported by grants from the Spanish Government (Nr TIN2010-21089-C03-01 ) and from the Catalan Government (Nr 2009-SGR-643 ).
PY - 2013/3
Y1 - 2013/3
N2 - Photorealistic 3D models are used for visualization, interpretation and spatial measurement in many disciplines, such as cultural heritage, archaeology and geoscience. Using modern image- and laser-based 3D modelling techniques, it is normal to acquire more data than is finally used for 3D model texturing, as images may be acquired from multiple positions, with large overlap, or with different cameras and lenses. Such redundant image sets require sorting to restrict the number of images, increasing the processing efficiency and realism of models. However, selection of image subsets optimized for texturing purposes is an example of complex spatial analysis. Manual selection may be challenging and time-consuming, especially for models of rugose topography, where the user must account for occlusions and ensure coverage of all relevant model triangles. To address this, this paper presents a framework for computer-aided image geometry analysis and subset selection for optimizing texture quality in photorealistic models. The framework was created to offer algorithms for candidate image subset selection, whilst supporting refinement of subsets in an intuitive and visual manner. Automatic image sorting was implemented using algorithms originating in computer science and information theory, and variants of these were compared using multiple 3D models and covering image sets, collected for geological applications. The image subsets provided by the automatic procedures were compared to manually selected sets and their suitability for 3D model texturing was assessed. Results indicate that the automatic sorting algorithms are a promising alternative to manual methods. An algorithm based on a greedy solution to the weighted set-cover problem provided image sets closest to the quality and size of the manually selected sets. The improved automation and more reliable quality indicators make the photorealistic model creation workflow more accessible for application experts, increasing the user's confidence in the final textured model completeness.
AB - Photorealistic 3D models are used for visualization, interpretation and spatial measurement in many disciplines, such as cultural heritage, archaeology and geoscience. Using modern image- and laser-based 3D modelling techniques, it is normal to acquire more data than is finally used for 3D model texturing, as images may be acquired from multiple positions, with large overlap, or with different cameras and lenses. Such redundant image sets require sorting to restrict the number of images, increasing the processing efficiency and realism of models. However, selection of image subsets optimized for texturing purposes is an example of complex spatial analysis. Manual selection may be challenging and time-consuming, especially for models of rugose topography, where the user must account for occlusions and ensure coverage of all relevant model triangles. To address this, this paper presents a framework for computer-aided image geometry analysis and subset selection for optimizing texture quality in photorealistic models. The framework was created to offer algorithms for candidate image subset selection, whilst supporting refinement of subsets in an intuitive and visual manner. Automatic image sorting was implemented using algorithms originating in computer science and information theory, and variants of these were compared using multiple 3D models and covering image sets, collected for geological applications. The image subsets provided by the automatic procedures were compared to manually selected sets and their suitability for 3D model texturing was assessed. Results indicate that the automatic sorting algorithms are a promising alternative to manual methods. An algorithm based on a greedy solution to the weighted set-cover problem provided image sets closest to the quality and size of the manually selected sets. The improved automation and more reliable quality indicators make the photorealistic model creation workflow more accessible for application experts, increasing the user's confidence in the final textured model completeness.
KW - 3D model
KW - Automatic
KW - Lidar
KW - Photogrammetry
KW - Texture
KW - Visualization
UR - http://www.scopus.com/inward/record.url?scp=84871495147&partnerID=8YFLogxK
U2 - 10.1016/j.cageo.2012.11.004
DO - 10.1016/j.cageo.2012.11.004
M3 - Article
AN - SCOPUS:84871495147
VL - 52
SP - 281
EP - 291
JO - Computers & Geosciences
JF - Computers & Geosciences
SN - 0098-3004
ER -