Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

Jonathan J. Dick, Chris Soulsby, Christian Birkel, Iain Malcolm, Doerthe Tetzlaff

Research output: Contribution to journalArticle

4 Citations (Scopus)
4 Downloads (Pure)

Abstract

Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, reaeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry.
Original languageEnglish
Article numbere0161363
Pages (from-to)1-23
Number of pages23
JournalPloS ONE
Volume11
Issue number8
DOIs
Publication statusPublished - 24 Aug 2016

Fingerprint

peatlands
Dissolved oxygen
Metabolism
dissolved oxygen
Respiration
Oxygen
metabolism
Soil
Peat
Photosynthesis
primary productivity
Catchments
Biomass
aeration
Productivity
Soils
Light
Geometry
physical control
Water

Cite this

Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams. / Dick, Jonathan J.; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe.

In: PloS ONE, Vol. 11, No. 8, e0161363, 24.08.2016, p. 1-23.

Research output: Contribution to journalArticle

@article{d9e4bc75d379463b83590b302a219589,
title = "Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams",
abstract = "Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, reaeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry.",
author = "Dick, {Jonathan J.} and Chris Soulsby and Christian Birkel and Iain Malcolm and Doerthe Tetzlaff",
note = "Acknowledgments We thank the Scottish Environmental Protection Agency and British Atmospheric Data Centre for the provision of meteorological data. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016). We also thank Edina Digimap Ordnance Survey for use of the 1:25000 Ordnance Survey map under license from Ordnance Survey (Digimap license). Funding: This work was supported by the following sources of funding: European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project (DT); Leverhulme Trust for funding through PLATO (RPG-2014-016) (DT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.",
year = "2016",
month = "8",
day = "24",
doi = "10.1371/journal.pone.0161363",
language = "English",
volume = "11",
pages = "1--23",
journal = "PloS ONE",
issn = "1932-6203",
publisher = "PUBLIC LIBRARY SCIENCE",
number = "8",

}

TY - JOUR

T1 - Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

AU - Dick, Jonathan J.

AU - Soulsby, Chris

AU - Birkel, Christian

AU - Malcolm, Iain

AU - Tetzlaff, Doerthe

N1 - Acknowledgments We thank the Scottish Environmental Protection Agency and British Atmospheric Data Centre for the provision of meteorological data. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016). We also thank Edina Digimap Ordnance Survey for use of the 1:25000 Ordnance Survey map under license from Ordnance Survey (Digimap license). Funding: This work was supported by the following sources of funding: European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project (DT); Leverhulme Trust for funding through PLATO (RPG-2014-016) (DT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

PY - 2016/8/24

Y1 - 2016/8/24

N2 - Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, reaeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry.

AB - Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, reaeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry.

U2 - 10.1371/journal.pone.0161363

DO - 10.1371/journal.pone.0161363

M3 - Article

VL - 11

SP - 1

EP - 23

JO - PloS ONE

JF - PloS ONE

SN - 1932-6203

IS - 8

M1 - e0161363

ER -