Convolutional Neural Networks for Direct Inference of Pharmacokinetic Parameters: Application to Stroke Dynamic Contrast-Enhanced MRI

Cagdas Ulas (Corresponding Author), Dhritiman Das, Michael J Thrippleton, Maria del C. Valdes Hernandez, Paul A Armitage, Stephen D Makin, Joanna M Wardlaw, Bjoern H Menze

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
2 Downloads (Pure)


Background and Purpose: The T1-weighted dynamic contrast enhanced (DCE)-MRI is an imaging technique that provides a quantitative measure of pharmacokinetic (PK) parameters characterizing microvasculature of tissues. For the present study, we propose a new machine learning (ML) based approach to directly estimate the PK parameters from the acquired DCE-MRI image-time series that is both more robust and faster than conventional model fitting. Materials and Methods: We specifically utilize deep convolutional neural networks (CNNs) to learn the mapping between the image-time series and corresponding PK parameters. DCE-MRI datasets acquired from 15 patients with clinically evident mild ischaemic stroke were used in the experiments. Training and testing were carried out based on leave-one-patient-out cross- validation. The parameter estimates obtained by the proposed CNN model were compared against the two tracer kinetic models: (1) Patlak model, (2) Extended Tofts model, where the estimation of model parameters is done via voxelwise linear and nonlinear least squares fitting respectively. Results: The trained CNN model is able to yield PK parameters which can better discriminate different brain tissues, including stroke regions. The results also demonstrate that the model generalizes well to new cases even if a subject specific arterial input function (AIF) is not available for the new data. Conclusion: A ML-based model can be used for direct inference of the PK parameters from DCE image series. This method may allow fast and robust parameter inference in population DCE studies. Parameter inference on a 3D volume-time series takes only a few seconds on a GPU machine, which is significantly faster compared to conventional non-linear least squares fitting.
Original languageEnglish
Article number1147
JournalFrontiers in Neurology
Publication statusPublished - 8 Jan 2019


  • contrast agent concentration convolutional neural networks dynamic contrast enhanced MRI ischaemic stroke loss function pharmacokinetic parameter inference tracer kinetic modeling
  • Loss function
  • Dynamic contrast enhanced MRI
  • Tracer kinetic modeling
  • Pharmacokinetic parameter inference
  • Convolutional neural networks
  • Contrast agent concentration
  • Ischaemic stroke
  • dynamic contrast enhanced MRI
  • contrast agent concentration
  • loss function
  • ischaemic stroke
  • pharmacokinetic parameter inference
  • convolutional neural networks
  • tracer kinetic modeling


Dive into the research topics of 'Convolutional Neural Networks for Direct Inference of Pharmacokinetic Parameters: Application to Stroke Dynamic Contrast-Enhanced MRI'. Together they form a unique fingerprint.

Cite this