Abstract
BACKGROUND: Machine learning methods are used in the classification of various cardiovascular diseases through ECG data analysis. The concept of varying subcutaneous implantable cardiac defibrillator (S-ICD) eligibility, owing to the dynamicity of ECG signals, has been introduced before. There are practical limitations to acquiring longer durations of ECG signals for S-ICD screening. This study explored the potential use of deep learning methods in S-ICD screening.
METHODS: This was a retrospective study. A deep learning tool was used to provide descriptive analysis of the T:R ratios over 24 h recordings of S-ICD vectors. Spearman's rank correlation test was used to compare the results statistically to those of a "gold standard" S-ICD simulator.
RESULTS: A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable ratio time (FVR)-a new concept introduced in this study-for all vectors combined were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically significant strong correlations between the outcomes of our novel tool and the S-ICD simulator (p < .001).
CONCLUSION: Deep learning methods could provide a practical software solution to analyze data acquired for longer durations than current S-ICD screening practices. This could help select patients better suited for S-ICD therapy as well as guide vector selection in S-ICD eligible patients. Further work is needed before this could be translated into clinical practice.
Original language | English |
---|---|
Pages (from-to) | e13056 |
Journal | Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc |
Early online date | 15 Mar 2023 |
DOIs | |
Publication status | Published - 15 Mar 2023 |
Keywords
- deep learning tools
- screening
- subcutaneous implantable cardiac defibrillator