TY - JOUR
T1 - Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics
AU - Tupikina, Liubov
AU - Molkenthin, Nora
AU - López, Cristóbal
AU - Hernández-García, Emilio
AU - Marwan, Norbert
AU - Kurths, Jürgen
N1 - Acknowledgments
We would like to thank Henk Dijkstra, Frank Hellman, Alexis Tantet for helpful and interesting discussions. Also we would like to acknowledge EC-funding through the Marie-Curie ITN LINC project (P7-PEOPLE-2011-ITN, grant No.289447), and FEDER and MINECO (Spain) through project ESCOLA (TM2012-39025-C02-01)
Funding: The authors would like to acknowledge EC-funding through the Marie-Curie ITN LINC project (P7-PEOPLE-2011-ITN, grant No.289447, http://climatelinc.eu/home/), and FEDER and MINECO (Spain) through project ESCOLA (TM2012-39025-C02-01, http://ifisc.uib-csic.es/). Thanks to LINC and ESCOLA projects, the interaction between groups was possible; as the result, the collaborators developed methods together and analyzed the methods applications.
PY - 2016/4/29
Y1 - 2016/4/29
N2 - Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.
AB - Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.
U2 - 10.1371/journal.pone.0153703
DO - 10.1371/journal.pone.0153703
M3 - Article
VL - 11
SP - 1
EP - 12
JO - PloS ONE
JF - PloS ONE
SN - 1932-6203
IS - 4
M1 - e0153703
ER -