Cost of flight in the zebra finch ( Taenopygia guttata): a novel approach based on elimination of (13)C labelled bicarbonate

C Hambly, E J Harper, J R Speakman

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

On three separate occasions, five zebra finches ( Taenopygia guttata) were injected intraperitoneally with 0.2 ml 0.29 M NaH(13)CO(3)solution and placed immediately into respirometry chambers to explore the link between (13)C elimination and both O(2) consumption (VO(2)) and CO(2) production (VCO(2)). Isotope elimination was best modelled by a mono-exponential decay. The elimination rate (k(c)) of the (13)C isotope in breath was compared to VO(2) (ml O(2)/min) and VCO(2) (ml CO(2)/min) over sequential 5-min time intervals following administration of the isotope. Elimination rates measured 15-20 min after injection gave the closest relationships to VO(2) ( r(2) =0.82) and VCO(2) ( r(2)=0.63). Adding the bicarbonate pool size (N(c)) into the prediction did not improve the fit. A second group of birds ( n=11) were flown for 2 min (three times in ten birds and twice in one) between 15 min and 20 min following an injection of 0.2 ml of the same NaH(13)CO(3) solution. Breath samples, collected before and after flight, were used to calculate k(c) over the flight period, which was converted to VO(2) and VCO(2) using the equation generated in the validation experiment for the corresponding time period. The energy expenditure (watts) during flight was calculated from these values using the average RQ measured during flight of 0.79. The average flight cost measured using the bicarbonate technique was 2.24+/-0.11 W (mean+/-SE). This average flight cost did not differ significantly from predictions generated by an allometric equation formulated by Masman and Klaassen (1987 Auk 104:603-616). It was however substantially higher than the predictions based on the aerodynamic model of Pennycuick (1989 Oxford University Press), which assumes an efficiency of 0.23 for flight. The flight efficiency in these birds was 0.11 using this model. Flight cost was not related to within-individual variation [general linear model (GLM) F(1,31)=1.16, P=0.29] or across-individual variations in body mass (GLM F(1,31)=0.26, P=0.61), wingspan (regression F(1,10)=0.01, P=0.94) or wing loading (regression F(1, 31)=0.001, P=0.99) in this sample of birds.
Original languageEnglish
Pages (from-to)529-539
Number of pages11
JournalJournal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology
Volume172
Issue number6
DOIs
Publication statusPublished - Aug 2002

Keywords

  • energy expenditure
  • flight costs
  • labelled bicarbonate technique
  • validation
  • zebra finch
  • energy-expenditure
  • energetics
  • water
  • birds
  • humans
  • pool
  • bats

Cite this

@article{71cb6e16146d48e1963528a8e3540d52,
title = "Cost of flight in the zebra finch ( Taenopygia guttata): a novel approach based on elimination of (13)C labelled bicarbonate",
abstract = "On three separate occasions, five zebra finches ( Taenopygia guttata) were injected intraperitoneally with 0.2 ml 0.29 M NaH(13)CO(3)solution and placed immediately into respirometry chambers to explore the link between (13)C elimination and both O(2) consumption (VO(2)) and CO(2) production (VCO(2)). Isotope elimination was best modelled by a mono-exponential decay. The elimination rate (k(c)) of the (13)C isotope in breath was compared to VO(2) (ml O(2)/min) and VCO(2) (ml CO(2)/min) over sequential 5-min time intervals following administration of the isotope. Elimination rates measured 15-20 min after injection gave the closest relationships to VO(2) ( r(2) =0.82) and VCO(2) ( r(2)=0.63). Adding the bicarbonate pool size (N(c)) into the prediction did not improve the fit. A second group of birds ( n=11) were flown for 2 min (three times in ten birds and twice in one) between 15 min and 20 min following an injection of 0.2 ml of the same NaH(13)CO(3) solution. Breath samples, collected before and after flight, were used to calculate k(c) over the flight period, which was converted to VO(2) and VCO(2) using the equation generated in the validation experiment for the corresponding time period. The energy expenditure (watts) during flight was calculated from these values using the average RQ measured during flight of 0.79. The average flight cost measured using the bicarbonate technique was 2.24+/-0.11 W (mean+/-SE). This average flight cost did not differ significantly from predictions generated by an allometric equation formulated by Masman and Klaassen (1987 Auk 104:603-616). It was however substantially higher than the predictions based on the aerodynamic model of Pennycuick (1989 Oxford University Press), which assumes an efficiency of 0.23 for flight. The flight efficiency in these birds was 0.11 using this model. Flight cost was not related to within-individual variation [general linear model (GLM) F(1,31)=1.16, P=0.29] or across-individual variations in body mass (GLM F(1,31)=0.26, P=0.61), wingspan (regression F(1,10)=0.01, P=0.94) or wing loading (regression F(1, 31)=0.001, P=0.99) in this sample of birds.",
keywords = "energy expenditure, flight costs, labelled bicarbonate technique, validation, zebra finch, energy-expenditure, energetics, water, birds, humans, pool, bats",
author = "C Hambly and Harper, {E J} and Speakman, {J R}",
year = "2002",
month = "8",
doi = "10.1007/s00360-002-0279-7",
language = "English",
volume = "172",
pages = "529--539",
journal = "Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology",
issn = "0174-1578",
publisher = "Springer Verlag",
number = "6",

}

TY - JOUR

T1 - Cost of flight in the zebra finch ( Taenopygia guttata)

T2 - a novel approach based on elimination of (13)C labelled bicarbonate

AU - Hambly, C

AU - Harper, E J

AU - Speakman, J R

PY - 2002/8

Y1 - 2002/8

N2 - On three separate occasions, five zebra finches ( Taenopygia guttata) were injected intraperitoneally with 0.2 ml 0.29 M NaH(13)CO(3)solution and placed immediately into respirometry chambers to explore the link between (13)C elimination and both O(2) consumption (VO(2)) and CO(2) production (VCO(2)). Isotope elimination was best modelled by a mono-exponential decay. The elimination rate (k(c)) of the (13)C isotope in breath was compared to VO(2) (ml O(2)/min) and VCO(2) (ml CO(2)/min) over sequential 5-min time intervals following administration of the isotope. Elimination rates measured 15-20 min after injection gave the closest relationships to VO(2) ( r(2) =0.82) and VCO(2) ( r(2)=0.63). Adding the bicarbonate pool size (N(c)) into the prediction did not improve the fit. A second group of birds ( n=11) were flown for 2 min (three times in ten birds and twice in one) between 15 min and 20 min following an injection of 0.2 ml of the same NaH(13)CO(3) solution. Breath samples, collected before and after flight, were used to calculate k(c) over the flight period, which was converted to VO(2) and VCO(2) using the equation generated in the validation experiment for the corresponding time period. The energy expenditure (watts) during flight was calculated from these values using the average RQ measured during flight of 0.79. The average flight cost measured using the bicarbonate technique was 2.24+/-0.11 W (mean+/-SE). This average flight cost did not differ significantly from predictions generated by an allometric equation formulated by Masman and Klaassen (1987 Auk 104:603-616). It was however substantially higher than the predictions based on the aerodynamic model of Pennycuick (1989 Oxford University Press), which assumes an efficiency of 0.23 for flight. The flight efficiency in these birds was 0.11 using this model. Flight cost was not related to within-individual variation [general linear model (GLM) F(1,31)=1.16, P=0.29] or across-individual variations in body mass (GLM F(1,31)=0.26, P=0.61), wingspan (regression F(1,10)=0.01, P=0.94) or wing loading (regression F(1, 31)=0.001, P=0.99) in this sample of birds.

AB - On three separate occasions, five zebra finches ( Taenopygia guttata) were injected intraperitoneally with 0.2 ml 0.29 M NaH(13)CO(3)solution and placed immediately into respirometry chambers to explore the link between (13)C elimination and both O(2) consumption (VO(2)) and CO(2) production (VCO(2)). Isotope elimination was best modelled by a mono-exponential decay. The elimination rate (k(c)) of the (13)C isotope in breath was compared to VO(2) (ml O(2)/min) and VCO(2) (ml CO(2)/min) over sequential 5-min time intervals following administration of the isotope. Elimination rates measured 15-20 min after injection gave the closest relationships to VO(2) ( r(2) =0.82) and VCO(2) ( r(2)=0.63). Adding the bicarbonate pool size (N(c)) into the prediction did not improve the fit. A second group of birds ( n=11) were flown for 2 min (three times in ten birds and twice in one) between 15 min and 20 min following an injection of 0.2 ml of the same NaH(13)CO(3) solution. Breath samples, collected before and after flight, were used to calculate k(c) over the flight period, which was converted to VO(2) and VCO(2) using the equation generated in the validation experiment for the corresponding time period. The energy expenditure (watts) during flight was calculated from these values using the average RQ measured during flight of 0.79. The average flight cost measured using the bicarbonate technique was 2.24+/-0.11 W (mean+/-SE). This average flight cost did not differ significantly from predictions generated by an allometric equation formulated by Masman and Klaassen (1987 Auk 104:603-616). It was however substantially higher than the predictions based on the aerodynamic model of Pennycuick (1989 Oxford University Press), which assumes an efficiency of 0.23 for flight. The flight efficiency in these birds was 0.11 using this model. Flight cost was not related to within-individual variation [general linear model (GLM) F(1,31)=1.16, P=0.29] or across-individual variations in body mass (GLM F(1,31)=0.26, P=0.61), wingspan (regression F(1,10)=0.01, P=0.94) or wing loading (regression F(1, 31)=0.001, P=0.99) in this sample of birds.

KW - energy expenditure

KW - flight costs

KW - labelled bicarbonate technique

KW - validation

KW - zebra finch

KW - energy-expenditure

KW - energetics

KW - water

KW - birds

KW - humans

KW - pool

KW - bats

U2 - 10.1007/s00360-002-0279-7

DO - 10.1007/s00360-002-0279-7

M3 - Article

C2 - 12192515

VL - 172

SP - 529

EP - 539

JO - Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology

JF - Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology

SN - 0174-1578

IS - 6

ER -