CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway

Juin-Hua Huang, Ching-Yu Lin, Sheng-Yang Wu, Wen-Yu Chen, Ching-Liang Chu, Gordon D Brown, Chih-Pin Chuu, Betty A Wu-Hsieh

Research output: Contribution to journalArticle

27 Citations (Scopus)
3 Downloads (Pure)

Abstract

Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

Original languageEnglish
Article number1004985
Number of pages26
JournalPLoS Pathogens
Volume11
Issue number7
Early online date1 Jul 2015
DOIs
Publication statusPublished - 1 Jul 2015

Fingerprint

Macrophage-1 Antigen
Transcription Factor AP-1
Macrophages
Cytokines
Lipids
Pattern Recognition Receptors
Histoplasma
Histoplasmosis
Mycoses
Adaptive Immunity
dectin 1
Immunity
Interleukin-6
Fungi
Pharmacology
Ligands

Cite this

CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. / Huang, Juin-Hua; Lin, Ching-Yu; Wu, Sheng-Yang; Chen, Wen-Yu; Chu, Ching-Liang; Brown, Gordon D; Chuu, Chih-Pin; Wu-Hsieh, Betty A.

In: PLoS Pathogens, Vol. 11, No. 7, 1004985, 01.07.2015.

Research output: Contribution to journalArticle

Huang, Juin-Hua ; Lin, Ching-Yu ; Wu, Sheng-Yang ; Chen, Wen-Yu ; Chu, Ching-Liang ; Brown, Gordon D ; Chuu, Chih-Pin ; Wu-Hsieh, Betty A. / CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. In: PLoS Pathogens. 2015 ; Vol. 11, No. 7.
@article{3ffc67d3dd334b8c9767e5f5ec3bff1b,
title = "CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway",
abstract = "Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.",
author = "Juin-Hua Huang and Ching-Yu Lin and Sheng-Yang Wu and Wen-Yu Chen and Ching-Liang Chu and Brown, {Gordon D} and Chih-Pin Chuu and Wu-Hsieh, {Betty A}",
note = "Copyright: {\circledC} 2015 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Acknowledgments We are grateful to the Second Core Laboratory of Research Core Facility at the National Taiwan University Hospital for confocal microscopy service and providing ultracentrifuge. We thank Dr. William E. Goldman (University of North Carolina, Chapel Hill, NC) for kindly providing WT and ags1-null mutant of H. capsulatum G186A. Funding: This work is supported by research grants 101-2320-B-002-030-MY3 from the Ministry of Science and Technology (http://www.most.gov.tw) and AS-101-TP-B06-3 from Academia Sinica (http://www.sinica.edu.tw) to BAWH. GDB is funded by research grant 102705 from Welcome Trust (http://www.wellcome.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.",
year = "2015",
month = "7",
day = "1",
doi = "10.1371/journal.ppat.1004985",
language = "English",
volume = "11",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "7",

}

TY - JOUR

T1 - CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway

AU - Huang, Juin-Hua

AU - Lin, Ching-Yu

AU - Wu, Sheng-Yang

AU - Chen, Wen-Yu

AU - Chu, Ching-Liang

AU - Brown, Gordon D

AU - Chuu, Chih-Pin

AU - Wu-Hsieh, Betty A

N1 - Copyright: © 2015 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Acknowledgments We are grateful to the Second Core Laboratory of Research Core Facility at the National Taiwan University Hospital for confocal microscopy service and providing ultracentrifuge. We thank Dr. William E. Goldman (University of North Carolina, Chapel Hill, NC) for kindly providing WT and ags1-null mutant of H. capsulatum G186A. Funding: This work is supported by research grants 101-2320-B-002-030-MY3 from the Ministry of Science and Technology (http://www.most.gov.tw) and AS-101-TP-B06-3 from Academia Sinica (http://www.sinica.edu.tw) to BAWH. GDB is funded by research grant 102705 from Welcome Trust (http://www.wellcome.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

PY - 2015/7/1

Y1 - 2015/7/1

N2 - Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

AB - Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

U2 - 10.1371/journal.ppat.1004985

DO - 10.1371/journal.ppat.1004985

M3 - Article

VL - 11

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 7

M1 - 1004985

ER -