Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungus Paxillus involutus in the presence of inhibitory levels of Cd and Zn

J Hartley, J W G Cairney, A A Meharg

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.

Original languageEnglish
Pages (from-to)141-149
Number of pages9
JournalNew Phytologist
Volume142
Issue number1
Publication statusPublished - Apr 1999

Keywords

  • cadmium
  • ectomycorrhizal fungi
  • Paxillus involutus
  • Scots pine (Pinus sylvestris)
  • zinc
  • ZINC TOLERANCE
  • TOXIC METALS
  • PHOSPHORUS
  • BETULA
  • ASSOCIATION
  • NITROGEN
  • PLANTS
  • GROWTH
  • PICEA

Cite this

Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungus Paxillus involutus in the presence of inhibitory levels of Cd and Zn. / Hartley, J ; Cairney, J W G ; Meharg, A A .

In: New Phytologist, Vol. 142, No. 1, 04.1999, p. 141-149.

Research output: Contribution to journalArticle

@article{fdc10938bc814e419fcc45e38b540fa6,
title = "Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungus Paxillus involutus in the presence of inhibitory levels of Cd and Zn",
abstract = "The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.",
keywords = "cadmium, ectomycorrhizal fungi, Paxillus involutus, Scots pine (Pinus sylvestris), zinc, ZINC TOLERANCE, TOXIC METALS, PHOSPHORUS, BETULA, ASSOCIATION, NITROGEN, PLANTS, GROWTH, PICEA",
author = "J Hartley and Cairney, {J W G} and Meharg, {A A}",
year = "1999",
month = "4",
language = "English",
volume = "142",
pages = "141--149",
journal = "New Phytologist",
issn = "0028-646X",
publisher = "Wiley/Blackwell (10.1111)",
number = "1",

}

TY - JOUR

T1 - Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungus Paxillus involutus in the presence of inhibitory levels of Cd and Zn

AU - Hartley, J

AU - Cairney, J W G

AU - Meharg, A A

PY - 1999/4

Y1 - 1999/4

N2 - The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.

AB - The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.

KW - cadmium

KW - ectomycorrhizal fungi

KW - Paxillus involutus

KW - Scots pine (Pinus sylvestris)

KW - zinc

KW - ZINC TOLERANCE

KW - TOXIC METALS

KW - PHOSPHORUS

KW - BETULA

KW - ASSOCIATION

KW - NITROGEN

KW - PLANTS

KW - GROWTH

KW - PICEA

M3 - Article

VL - 142

SP - 141

EP - 149

JO - New Phytologist

JF - New Phytologist

SN - 0028-646X

IS - 1

ER -