Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer

Martin Kerr, Helen E. Scott, Blaz Groselj, Michael R.L. Stratford, Katalin Karaszi, Naomi L. Sharma, Anne E. Kiltie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Purpose: In a recent phase II clinical trial, low-dose (100 mg/m2) gemcitabine showed promise as a radiosensitizer in bladder cancer, but underlying mechanisms lack elucidation. Here, we investigated the mechanism of radiosensitization by low-dose gemcitabine in bladder cancer cell lines. Experimental Design: Four bladder cancer cell lines were screened for radiosensitization by low-dose gemcitabine using clonogenic assay, and gemcitabine-resistant RT112gem and CALgem cells created by exposure to increasing gemcitabine doses. Four key gemcitabine-regulatory genes were knocked down by transient siRNA. Nude mice carrying CALgem subcutaneous xenografts were exposed to 100 mg/kg gemcitabine ± ionizing radiation (IR) and response assessed by tumor growth delay. Results: Gemcitabine was cytotoxic in the low nanomolar range (10-40 nmol/L) in four bladder cancer cell lines and radiosensitized all four lines. Sensitizer enhancement ratios at 10% survival were: RT112 1.42, CAL29 1.55, T24 1.63, and VMCUB1 1.47. Transient siRNA knockdown of deoxycytidine kinase (dCK) significantly reduced radiosensitization by gemcitabine (P = 0.02). RT112gem and CALgem cells displayed robust decreases of dCK mRNA and protein levels; reexpression of dCK restored gemcitabine sensitivity. However, CALgem xenografts responded better to combination gemcitabine/IR than either treatment alone (P < 0.001) with dCK strongly expressed in the tumor vasculature and stroma. Conclusions: Gemcitabine resistance in bladder cancer cell lines was associated with decreased dCK expression, but gemcitabine-resistant xenografts were responsive to combination low-dose gemcitabine/IR. We propose that dCK activity in tumor vasculature renders it gemcitabine sensitive, which is sufficient to invoke a tumor response and permit tumor cell kill in gemcitabine-resistant tumors.

Original languageEnglish
Pages (from-to)5435-5445
Number of pages11
JournalClinical Cancer Research
Volume20
Issue number21
DOIs
Publication statusPublished - 1 Nov 2014

Bibliographical note

Publisher Copyright:
©2014 AACR.

Fingerprint

Dive into the research topics of 'Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer'. Together they form a unique fingerprint.

Cite this