Development and analysis of the Soil Water Infiltration Global database

Mehdi Rahmati*, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein AsadiYazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista De Oliveira, José Ronaldo De Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo De Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesüs Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, Harry Vereecken

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

95 Citations (Scopus)

Abstract

In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (∼76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76ĝ€% of the experimental sites with agricultural land use as the dominant type (∼40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in ∗.xlsx and ∗.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it.

Original languageEnglish
Pages (from-to)1237-1263
Number of pages27
JournalEarth System Science Data
Volume10
Issue number3
DOIs
Publication statusPublished - 10 Jul 2018

Bibliographical note

Funding Information:
The support of the Slovak Research and Development Agency through project no. APVV-15-0160 is acknowledged.

Funding Information:
First author thanks the International and Scientific Cooperation Office of the University of Maragheh, Iran, as well as the research committee and board members of the university for their assistance in conducting the current work. The financial support received from the Forschungszentrum Jülich GmbH is gratefully acknowledged by the first author. Authors gratefully thank the International Soil Modeling Consortium (ISMC) and the International Soil Tillage Research Organization (ISTRO) for their help in distributing our call for data among researchers throughout the world. Parts of data were gathered from the work that was supported by the UK-China Virtual Joint Centre for Improved Nitrogen Agronomy (CINAg, BB/N013468/1), which is jointly supported by the Newton Fund, via UK BBSRC and NERC. The French Claduègne and Yzeron datasets were acquired during the ANR projects FloodScale (ANR-2011-BS56-027) and AVuUR (ANR-07-VULN-01), respectively. Parts of the database were made available through research work carried out in the framework of LIFEC projects funded by the EC. The support of the Spanish Ministry of Economy through project CGL2014-53017-C2-1-R is acknowledged. The support of the Czech Science Foundation through project no. 16-05665S is acknowledged. The support of the Slovak Research and Development Agency through project no. APVV-15-0160 is acknowledged. Authors are grateful to Atilla Nemes, Jan W. Hopmans, and Marnik Vanclooster for their time and attention in reviewing and commenting on this article.

Funding Information:
Parts of the database were made available through research work carried out in the framework of LIFE+ projects funded by the EC.

Funding Information:
The financial support received from the Forschungszentrum Jülich GmbH is gratefully acknowledged by the first author.

Funding Information:
The support of the Czech Science Foundation through project no. 16-05665S is acknowledged.

Publisher Copyright:
© Author(s) 2018.

Data Availability Statement

All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference and are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). We add a disclaimer that the database is for public domain use only and can be copied freely by referencing it.

Fingerprint

Dive into the research topics of 'Development and analysis of the Soil Water Infiltration Global database'. Together they form a unique fingerprint.

Cite this