Development of the consistent second-order plate theory for transversely isotropic plates and its analytical assessment from the three-dimensional perspective

Maria Kashtalyan* (Corresponding Author), Reinhold Kienzler, M. Meyer-Coors

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
7 Downloads (Pure)

Abstract

In this paper, the consistent second-order plate theory is developed for transversely isotropic plates. It is validated against the three-dimensional elasticity theory using a well-known benchmark problem of a simply-supported rectangular plate subjected to symmetric transverse sinusoidal loading. The choice of the benchmark problem is based on the fact that it allows for an exact three-dimensional elasticity solution to be derived in closed form. In this study, a closed-form solution based on Elliot’s displacement potentials for transversely isotropic solids is specifically derived for validation purposes. Its equivalence to other closed- form analytical solutions is established. Expanding the closed-form analytical solution into a power-law series with respect to the non-dimensionalised plate thickness enables a direct term-by-term comparison with the consistent second-order plate theory solution and provides a valuable mechanism to validate the consistent plate theory for transversely isotropic plates in a purely analytical form. The term-by term comparison reveals that the first terms of the above power-law series coincide exactly with the expressions of the consistent second-order plate theory. In addition to the analytical validation, a numerical validation using the finite element method is performed. A comparative analysis of several plate theories for transversely isotropic plates demonstrates that the consistent plate theory can predict displacements and stresses in thick transversely isotropic plates with very high degree of accuracy, such that even for very thick plates with a thickness-to-length ratio of 0.5, the deviation from the three-dimensional elasticity solution is less than 1%.
Original languageEnglish
Article number107704
Number of pages12
JournalThin-walled Structures
Volume163
Early online date15 Apr 2021
DOIs
Publication statusPublished - 30 Jun 2021

Bibliographical note

Financial support of this research by The Royal Society (UK) International Exchanges award (IE161021) and by the German Science Foundation (DFG) under Project-No. Ki 284/25-1 is gratefully acknowledged

Keywords

  • consistent plate theory
  • transversely isotropic plate
  • hree-dimensional theory of elasticity
  • closed-form solution
  • Elliott's displacement potentials

Fingerprint

Dive into the research topics of 'Development of the consistent second-order plate theory for transversely isotropic plates and its analytical assessment from the three-dimensional perspective'. Together they form a unique fingerprint.

Cite this