Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy

Shamim Ahmad, Rasha Abu-Eid, Rajeev Shrimali, Mason Webb, Vivek Verma, Atbin Doroodchi, Zuzana Berrong, Raed Samara, Paulo C. Rodriguez, Mikayel Mkrtichyan, Samir N. Khleif* (Corresponding Author)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)
11 Downloads (Pure)

Abstract

To modulate T cell function for cancer therapy one challenge is to selectively attenuate regulatory but not conventional CD4+ T cell subsets (Treg and Tconv). In this study we show how a functional dichotomy in Class IA PI3K isoforms in these two subsets of CD4+ T cells be exploited to target Treg while leaving Tconv intact. Studies employing isoform-specific PI3K inhibitors and a PI3Kδ-deficient mouse strain revealed that PI3Kα and PI3Kβ were functionally redundant with PI3Kδ in Tconv. Conversely, PI3Kδ was functionally critical in Treg, acting there to control TCR signaling, cell proliferation and survival. Notably, in a murine model of lung cancer, co-administration of a PI3Kδ-specific inhibitor with a tumor-specific vaccine decreased numbers of suppressive Treg and increased numbers of vaccine-induced CD8 T-cells within the tumor microenvironment, eliciting potent anti-tumor efficacy. Overall, our results offer a mechanistic rationale to employ PI3Kδ inhibitors to selectively target Treg and improve cancer immunotherapy.

Original languageEnglish
Pages (from-to)1892-1904
Number of pages13
JournalCancer Research
Volume77
Issue number8
Early online date20 Jan 2017
DOIs
Publication statusPublished - 15 Apr 2017

Fingerprint

Dive into the research topics of 'Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy'. Together they form a unique fingerprint.

Cite this