Diffusion in randomly perturbed dissipative dynamics

Christian S. Rodrigues, Aleksei V. Chechkin, Alessandro P. S. de Moura, Celso Grebogi, Rainer Klages

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic Continuous Time Random Walk theory.
Original languageEnglish
Article number40002
JournalEurophysics Letters
Volume108
Issue number4
DOIs
Publication statusPublished - 12 Nov 2014

Keywords

  • nlin.CD
  • cond-mat.stat-mech
  • math-ph
  • math.MP
  • physics.data-an

Fingerprint Dive into the research topics of 'Diffusion in randomly perturbed dissipative dynamics'. Together they form a unique fingerprint.

Cite this