Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

Chengjin Chu (Corresponding Author), James A Lutz, Král Kamil, Tomas Vrska, Xue Yin, Jonathan A Myers, Iveren Abiem, Alfonso Alonso, Norm Bourg, David F R P Burslem, Min Cao, Hazel Chapman, Richard Condit, Suqin Fang, Gunter A Fischer, Lianming Gao, Zhanqing Hao, Billy C.H. Hau, Qing He, Andrew Hector & 49 others Stephen P Hubbell, Mingxi Jiang, Guangze Jin, David Kenfack, Jiangshan Lai, Buhang Li, Xiankun Li, Yu Liu, Yahuang Luo, Keping Ma, William McShea, Herve R. Memiaghe, Xiangcheng Mi, Ming Ni, Michael J O'Brien, Alexandre A de Oliveira, David A Orwig, Geoffrey G Parker, Xiujuan Qiao, Haibao Ren, Glen Reynolds, Weiguo Sang, Guochun Shen, Zhiyao Su, Xinghua Sui, I-Fang Sun, Songyan Tian, Bin Wang, Xihua Wang, Xugao Wang, Youshi Wang, George Weiblen, Shujun Wen, Nianxun Xi, Wusheng Xiang, Han Xu, Kun Xu, Wanhui Ye, Bingwei Zhang, Jiaxin Zhang, Xiaotong Zhang, Yingming Zhang, Kai Zhu Zhu, Jess Zimmerman, David Storch, Jennifer L Baltzer, Kristina J Anderson-Teixeira, Gary G. Mittelbach, Fangliang He

Research output: Contribution to journalArticle

Abstract

Climate is widely recognized as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesized relationships among climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates, and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
Original languageEnglish
Pages (from-to)245-255
Number of pages11
JournalEcology Letters
Volume22
Issue number2
Early online date12 Dec 2018
DOIs
Publication statusPublished - Feb 2019

Fingerprint

forest trees
climate
stem
species diversity
stems
niche partitioning
coevolution
effect
basal area
topography
primary productivity
niches
species richness
biodiversity
productivity
testing

Keywords

  • climate tolerance hypothesis
  • CTFS-ForestGEO
  • latitudinal diversity gradient
  • more-individuals hypothesis
  • species-energy relationship,
  • structural equation modeling
  • species-energy relationship
  • Climate tolerance hypothesis
  • structural equation modelling

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Cite this

Chu, C., Lutz, J. A., Kamil, K., Vrska, T., Yin, X., Myers, J. A., ... He, F. (2019). Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22(2), 245-255. https://doi.org/10.1111/ele.13175

Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. / Chu, Chengjin (Corresponding Author); Lutz, James A; Kamil, Král; Vrska, Tomas; Yin, Xue; Myers, Jonathan A; Abiem, Iveren ; Alonso, Alfonso; Bourg, Norm; Burslem, David F R P; Cao, Min; Chapman, Hazel; Condit, Richard; Fang, Suqin ; Fischer, Gunter A; Gao, Lianming; Hao, Zhanqing; Hau, Billy C.H.; He, Qing ; Hector, Andrew; Hubbell, Stephen P; Jiang, Mingxi; Jin, Guangze; Kenfack, David; Lai, Jiangshan; Li, Buhang; Li, Xiankun; Liu, Yu; Luo, Yahuang; Ma, Keping; McShea, William; Memiaghe, Herve R.; Mi, Xiangcheng; Ni, Ming; O'Brien, Michael J; de Oliveira, Alexandre A; Orwig, David A; Parker, Geoffrey G; Qiao, Xiujuan ; Ren, Haibao; Reynolds, Glen; Sang, Weiguo; Shen, Guochun; Su, Zhiyao; Sui, Xinghua; Sun, I-Fang; Tian, Songyan ; Wang, Bin; Wang, Xihua; Wang, Xugao; Wang, Youshi; Weiblen, George; Wen, Shujun; Xi, Nianxun; Xiang, Wusheng; Xu, Han; Xu, Kun; Ye, Wanhui; Zhang, Bingwei ; Zhang, Jiaxin ; Zhang, Xiaotong ; Zhang, Yingming ; Zhu, Kai Zhu; Zimmerman, Jess; Storch, David ; Baltzer, Jennifer L; Anderson-Teixeira, Kristina J; Mittelbach, Gary G. ; He, Fangliang.

In: Ecology Letters, Vol. 22, No. 2, 02.2019, p. 245-255.

Research output: Contribution to journalArticle

Chu, C, Lutz, JA, Kamil, K, Vrska, T, Yin, X, Myers, JA, Abiem, I, Alonso, A, Bourg, N, Burslem, DFRP, Cao, M, Chapman, H, Condit, R, Fang, S, Fischer, GA, Gao, L, Hao, Z, Hau, BCH, He, Q, Hector, A, Hubbell, SP, Jiang, M, Jin, G, Kenfack, D, Lai, J, Li, B, Li, X, Liu, Y, Luo, Y, Ma, K, McShea, W, Memiaghe, HR, Mi, X, Ni, M, O'Brien, MJ, de Oliveira, AA, Orwig, DA, Parker, GG, Qiao, X, Ren, H, Reynolds, G, Sang, W, Shen, G, Su, Z, Sui, X, Sun, I-F, Tian, S, Wang, B, Wang, X, Wang, X, Wang, Y, Weiblen, G, Wen, S, Xi, N, Xiang, W, Xu, H, Xu, K, Ye, W, Zhang, B, Zhang, J, Zhang, X, Zhang, Y, Zhu, KZ, Zimmerman, J, Storch, D, Baltzer, JL, Anderson-Teixeira, KJ, Mittelbach, GG & He, F 2019, 'Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees', Ecology Letters, vol. 22, no. 2, pp. 245-255. https://doi.org/10.1111/ele.13175
Chu, Chengjin ; Lutz, James A ; Kamil, Král ; Vrska, Tomas ; Yin, Xue ; Myers, Jonathan A ; Abiem, Iveren ; Alonso, Alfonso ; Bourg, Norm ; Burslem, David F R P ; Cao, Min ; Chapman, Hazel ; Condit, Richard ; Fang, Suqin ; Fischer, Gunter A ; Gao, Lianming ; Hao, Zhanqing ; Hau, Billy C.H. ; He, Qing ; Hector, Andrew ; Hubbell, Stephen P ; Jiang, Mingxi ; Jin, Guangze ; Kenfack, David ; Lai, Jiangshan ; Li, Buhang ; Li, Xiankun ; Liu, Yu ; Luo, Yahuang ; Ma, Keping ; McShea, William ; Memiaghe, Herve R. ; Mi, Xiangcheng ; Ni, Ming ; O'Brien, Michael J ; de Oliveira, Alexandre A ; Orwig, David A ; Parker, Geoffrey G ; Qiao, Xiujuan ; Ren, Haibao ; Reynolds, Glen ; Sang, Weiguo ; Shen, Guochun ; Su, Zhiyao ; Sui, Xinghua ; Sun, I-Fang ; Tian, Songyan ; Wang, Bin ; Wang, Xihua ; Wang, Xugao ; Wang, Youshi ; Weiblen, George ; Wen, Shujun ; Xi, Nianxun ; Xiang, Wusheng ; Xu, Han ; Xu, Kun ; Ye, Wanhui ; Zhang, Bingwei ; Zhang, Jiaxin ; Zhang, Xiaotong ; Zhang, Yingming ; Zhu, Kai Zhu ; Zimmerman, Jess ; Storch, David ; Baltzer, Jennifer L ; Anderson-Teixeira, Kristina J ; Mittelbach, Gary G. ; He, Fangliang. / Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. In: Ecology Letters. 2019 ; Vol. 22, No. 2. pp. 245-255.
@article{f4de4a93117749359cea91d0fa03f1d7,
title = "Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees",
abstract = "Climate is widely recognized as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesized relationships among climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates, and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.",
keywords = "climate tolerance hypothesis, CTFS-ForestGEO, latitudinal diversity gradient, more-individuals hypothesis, species-energy relationship,, structural equation modeling, species-energy relationship, Climate tolerance hypothesis, structural equation modelling",
author = "Chengjin Chu and Lutz, {James A} and Kr{\'a}l Kamil and Tomas Vrska and Xue Yin and Myers, {Jonathan A} and Iveren Abiem and Alfonso Alonso and Norm Bourg and Burslem, {David F R P} and Min Cao and Hazel Chapman and Richard Condit and Suqin Fang and Fischer, {Gunter A} and Lianming Gao and Zhanqing Hao and Hau, {Billy C.H.} and Qing He and Andrew Hector and Hubbell, {Stephen P} and Mingxi Jiang and Guangze Jin and David Kenfack and Jiangshan Lai and Buhang Li and Xiankun Li and Yu Liu and Yahuang Luo and Keping Ma and William McShea and Memiaghe, {Herve R.} and Xiangcheng Mi and Ming Ni and O'Brien, {Michael J} and {de Oliveira}, {Alexandre A} and Orwig, {David A} and Parker, {Geoffrey G} and Xiujuan Qiao and Haibao Ren and Glen Reynolds and Weiguo Sang and Guochun Shen and Zhiyao Su and Xinghua Sui and I-Fang Sun and Songyan Tian and Bin Wang and Xihua Wang and Xugao Wang and Youshi Wang and George Weiblen and Shujun Wen and Nianxun Xi and Wusheng Xiang and Han Xu and Kun Xu and Wanhui Ye and Bingwei Zhang and Jiaxin Zhang and Xiaotong Zhang and Yingming Zhang and Zhu, {Kai Zhu} and Jess Zimmerman and David Storch and Baltzer, {Jennifer L} and Anderson-Teixeira, {Kristina J} and Mittelbach, {Gary G.} and Fangliang He",
note = "Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.",
year = "2019",
month = "2",
doi = "10.1111/ele.13175",
language = "English",
volume = "22",
pages = "245--255",
journal = "Ecology Letters",
issn = "1461-023X",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

AU - Chu, Chengjin

AU - Lutz, James A

AU - Kamil, Král

AU - Vrska, Tomas

AU - Yin, Xue

AU - Myers, Jonathan A

AU - Abiem, Iveren

AU - Alonso, Alfonso

AU - Bourg, Norm

AU - Burslem, David F R P

AU - Cao, Min

AU - Chapman, Hazel

AU - Condit, Richard

AU - Fang, Suqin

AU - Fischer, Gunter A

AU - Gao, Lianming

AU - Hao, Zhanqing

AU - Hau, Billy C.H.

AU - He, Qing

AU - Hector, Andrew

AU - Hubbell, Stephen P

AU - Jiang, Mingxi

AU - Jin, Guangze

AU - Kenfack, David

AU - Lai, Jiangshan

AU - Li, Buhang

AU - Li, Xiankun

AU - Liu, Yu

AU - Luo, Yahuang

AU - Ma, Keping

AU - McShea, William

AU - Memiaghe, Herve R.

AU - Mi, Xiangcheng

AU - Ni, Ming

AU - O'Brien, Michael J

AU - de Oliveira, Alexandre A

AU - Orwig, David A

AU - Parker, Geoffrey G

AU - Qiao, Xiujuan

AU - Ren, Haibao

AU - Reynolds, Glen

AU - Sang, Weiguo

AU - Shen, Guochun

AU - Su, Zhiyao

AU - Sui, Xinghua

AU - Sun, I-Fang

AU - Tian, Songyan

AU - Wang, Bin

AU - Wang, Xihua

AU - Wang, Xugao

AU - Wang, Youshi

AU - Weiblen, George

AU - Wen, Shujun

AU - Xi, Nianxun

AU - Xiang, Wusheng

AU - Xu, Han

AU - Xu, Kun

AU - Ye, Wanhui

AU - Zhang, Bingwei

AU - Zhang, Jiaxin

AU - Zhang, Xiaotong

AU - Zhang, Yingming

AU - Zhu, Kai Zhu

AU - Zimmerman, Jess

AU - Storch, David

AU - Baltzer, Jennifer L

AU - Anderson-Teixeira, Kristina J

AU - Mittelbach, Gary G.

AU - He, Fangliang

N1 - Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.

PY - 2019/2

Y1 - 2019/2

N2 - Climate is widely recognized as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesized relationships among climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates, and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.

AB - Climate is widely recognized as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesized relationships among climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates, and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.

KW - climate tolerance hypothesis

KW - CTFS-ForestGEO

KW - latitudinal diversity gradient

KW - more-individuals hypothesis

KW - species-energy relationship,

KW - structural equation modeling

KW - species-energy relationship

KW - Climate tolerance hypothesis

KW - structural equation modelling

UR - http://www.scopus.com/inward/record.url?scp=85058378107&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/direct-indirect-effects-climate-richness-drive-latitudinal-diversity-gradient-forest-trees-1

U2 - 10.1111/ele.13175

DO - 10.1111/ele.13175

M3 - Article

VL - 22

SP - 245

EP - 255

JO - Ecology Letters

JF - Ecology Letters

SN - 1461-023X

IS - 2

ER -