Direct Numerical Simulation of Magnetic Particles Suspended in a Newtonian Fluid Exhibiting Finite Inertia Under SAOS

Mohammad Reza Hashemi, M.T. Manzari, Rouhollah Fatehi

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
5 Downloads (Pure)

Abstract

A direct numerical simulation approach is utilized to understand the oscillatory shear rheology of a confined suspension of magnetic chains formed by paramagnetic circular cylinders under the influence of an external magnetic field. The common assumption of gap-spanning chains made in the literature is relaxed in this work, so that a fully suspended (periodic) array of magnetic chains is formed. In this sense, the effective rheological parameters are only influenced through a layer of fluid adjacent to the walls. All tests are conducted at very low but finite particle Reynolds numbers, and typical inertial effects are discussed. The main aim of the present study is to investigate the apparent viscoelasticity of the system as a function of the external magnetic field and frequency of the input strain. This work concentrates on cases with large blockage ratio in order to have pronounced viscoelastic behaviours.
Original languageEnglish
Pages (from-to)8-22
Number of pages15
JournalJournal of non-Newtonian fluid mechanics
Volume256
Early online date13 Mar 2018
DOIs
Publication statusPublished - Jun 2018

Keywords

  • Magnetorheology
  • Small amplitude oscillatory shear
  • Magnetic chains suspension

Fingerprint

Dive into the research topics of 'Direct Numerical Simulation of Magnetic Particles Suspended in a Newtonian Fluid Exhibiting Finite Inertia Under SAOS'. Together they form a unique fingerprint.

Cite this