TY - JOUR
T1 - Disentangling thermal stress responses in a reef-calcifier and its photosymbionts by shotgun proteomics
AU - Stuhr, Marleen
AU - Blank-Landeshammer, Bernhard
AU - Reymond, Claire E.
AU - Kollipara, Laxmikanth
AU - Sickmann, Albert
AU - Kucera, Michal
AU - Westphal, Hildegard
N1 - This project was funded by the Leibniz Association (SAW-2014-ISAS-2) awarded to AS and HW and supported by the Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen, the Regierende Bürgermeister von Berlin - inkl. Wissenschaft und Forschung, and the Bundesministerium für Bildung und Forschung. Sampling was conducted under the Research Permit No. FKNMS-2015–026, issued to Pamela Hallock who is warmly acknowledged for her general support and assistance during fieldwork.
PY - 2018/2/23
Y1 - 2018/2/23
N2 - The proliferation of key marine ecological engineers and carbonate producers often relies on their association with photosymbiotic algae. Evaluating stress responses of these organisms is important to predict their fate under future climate projections. Physiological approaches are limited in their ability to resolve the involved molecular mechanisms and attribute stress effects to the host or symbiont, while probing and partitioning of proteins cannot be applied in organisms where the host and symbiont are small and cannot be physically separated. Here we apply a label-free quantitative proteomics approach to detect changes of proteome composition in the diatom-bearing benthic foraminifera Amphistegina gibbosa experimentally exposed to three thermal-stress scenarios. We developed a workflow for protein extraction from less than ten specimens and simultaneously analysed host and symbiont proteomes. Despite little genomic data for the host, 1,618 proteins could be partially assembled and assigned. The proteomes revealed identical pattern of stress response among stress scenarios as that indicated by physiological measurements, but allowed identification of compartment-specific stress reactions. In the symbiont, stress-response and proteolysis-related proteins were up regulated while photosynthesis-related proteins declined. In contrast, host homeostasis was maintained through chaperone up-regulation associated with elevated proteosynthesis and proteolysis, and the host metabolism shifted to heterotrophy.
AB - The proliferation of key marine ecological engineers and carbonate producers often relies on their association with photosymbiotic algae. Evaluating stress responses of these organisms is important to predict their fate under future climate projections. Physiological approaches are limited in their ability to resolve the involved molecular mechanisms and attribute stress effects to the host or symbiont, while probing and partitioning of proteins cannot be applied in organisms where the host and symbiont are small and cannot be physically separated. Here we apply a label-free quantitative proteomics approach to detect changes of proteome composition in the diatom-bearing benthic foraminifera Amphistegina gibbosa experimentally exposed to three thermal-stress scenarios. We developed a workflow for protein extraction from less than ten specimens and simultaneously analysed host and symbiont proteomes. Despite little genomic data for the host, 1,618 proteins could be partially assembled and assigned. The proteomes revealed identical pattern of stress response among stress scenarios as that indicated by physiological measurements, but allowed identification of compartment-specific stress reactions. In the symbiont, stress-response and proteolysis-related proteins were up regulated while photosynthesis-related proteins declined. In contrast, host homeostasis was maintained through chaperone up-regulation associated with elevated proteosynthesis and proteolysis, and the host metabolism shifted to heterotrophy.
UR - http://www.scopus.com/inward/record.url?scp=85042536844&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-21875-z
DO - 10.1038/s41598-018-21875-z
M3 - Article
AN - SCOPUS:85042536844
VL - 8
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 3524
ER -