Drinfeld Centers for Bicategories

Ehud Meir, Markus Szymik

Research output: Contribution to journalArticle

7 Citations (Scopus)
8 Downloads (Pure)

Abstract

We generalize Drinfeld's notion of the center of a tensor category to bicategories. In this generality, we present a spectral sequence to compute the basic invariants of Drinfeld centers: the abelian monoid of isomorphism classes of objects, and the abelian automorphism group of its identity object. There is an associated obstruction theory that explains the difference between the Drinfeld center and the center of the classifying category. For examples, we discuss bicategories of groups and bands, rings and bimodules, as well as fusion categories.
Original languageEnglish
Pages (from-to)707-735
Number of pages30
JournalDocumenta Mathematica
Volume20
Publication statusPublished - 2015

Keywords

  • Drinfeld centers
  • bicategories
  • spectral sequences
  • obstruction theory
  • bands
  • bimodules
  • fusion categories

Fingerprint Dive into the research topics of 'Drinfeld Centers for Bicategories'. Together they form a unique fingerprint.

  • Cite this