Dynamical maximum entropy approach to flocking

Andrea Cavagna*, Irene Giardina, Francesco Ginelli, Thierry Mora, Duccio Piovani, Raffaele Tavarone, Aleksandra M Walczak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)
4 Downloads (Pure)

Abstract

We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

Original languageEnglish
Article number042707
Number of pages10
JournalPhysical Review. E, Statistical, Nonlinear and Soft Matter Physics
Volume89
Issue number4
DOIs
Publication statusPublished - 16 Apr 2014

Keywords

  • collective animal behavior
  • starflag handbook
  • starling flogs
  • mechanics
  • retina
  • motion
  • birds
  • fish

Fingerprint

Dive into the research topics of 'Dynamical maximum entropy approach to flocking'. Together they form a unique fingerprint.

Cite this