TY - JOUR
T1 - Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques
AU - Geris, Josie
AU - Tetzlaff, Doerthe
AU - McDonnell, Jeffery
AU - Anderson, Jim
AU - Paton, Graeme
AU - Soulsby, Chris
N1 - Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA
ACKNOWLEDGEMENTS
The constructive comments and suggestions from two anonymous reviewers greatly improved an earlier version of this manuscript. Jon Dick, Jason Lesselsand Jane Bang Poulsen are thanked for assistance with data collection; Audrey Innes for sample preparation and assistance with the cryogenic extraction of water samples; Paula Craib for glassware design; Colleagues in Prof. J. Anderson’s lab for day-to-day assistance incryogenic extraction; Todd Dawson and Nathalie Schultz for providing information on extraction techniques and the analysis of vegetation water; Hedda Weitz for help with the centrifugation of soil samples;and Iain Malcolm and colleagues at the Marine Scotland Freshwater Lab for providing meteorological data. We thank Jason Newton and the Scottish Universities Environmental Research Centre (SUERC) Mass Spectrometry Facility Laboratory in East Kilbride for theisotopic analyses of the xylem water samples. The European Research Council ERC (project GA 335910VEWA) is thanked for funding.
PY - 2015/12/15
Y1 - 2015/12/15
N2 - Ecohydrological studies in seasonally dry climatic regions have revealed isotopic separation of the sources of water used by trees and those that generate stream flow, also referred to as the ‘two water worlds’ hypothesis. Here we investigated whether similar separation occurs in a wet, low energy northern (Latitude 57º) environment in Scotland. For two common soil types (Histosols and Podzols) at three soil depths, and at both forested (with Scots Pine (Pinus sylvestris)) and non-forested sites, we compared the stable isotope composition of soil water held at increasing soil water tensions. These were assessed by different soil water extraction techniques: Rhizon samplers (mobile water), centrifugation at different speeds (representing different tensions), and cryogenic extraction (bulk water). Sampling occurred during a relatively dry summer. Water that was held at increasing tensions appeared more depleted than more mobile water, consistent with older (winter) precipitation. This pattern was independent of soil type, vegetation cover, and time during the growing season, although there was a slight tendency towards less separation with soil depth. Nevertheless, soil waters in this generally wet, low energy environment exhibited only minor evaporative enrichment, limited to the upper soil profile only. Furthermore, stream water showed no deviation from the local meteoric water line. Preliminary sampling for tree xylem water suggested uptake of evaporated soil water from the near surface soil horizons (upper 10 cm) where fine root densities are concentrated. For Histosols in particular, tree water appeared lagged in its isotopic composition compared to the soil water time series. Although more work is needed to fully test the ‘two water worlds’ hypothesis, our initial analyses did not provide clear evidence to support this in wet, low energy northern environments.
AB - Ecohydrological studies in seasonally dry climatic regions have revealed isotopic separation of the sources of water used by trees and those that generate stream flow, also referred to as the ‘two water worlds’ hypothesis. Here we investigated whether similar separation occurs in a wet, low energy northern (Latitude 57º) environment in Scotland. For two common soil types (Histosols and Podzols) at three soil depths, and at both forested (with Scots Pine (Pinus sylvestris)) and non-forested sites, we compared the stable isotope composition of soil water held at increasing soil water tensions. These were assessed by different soil water extraction techniques: Rhizon samplers (mobile water), centrifugation at different speeds (representing different tensions), and cryogenic extraction (bulk water). Sampling occurred during a relatively dry summer. Water that was held at increasing tensions appeared more depleted than more mobile water, consistent with older (winter) precipitation. This pattern was independent of soil type, vegetation cover, and time during the growing season, although there was a slight tendency towards less separation with soil depth. Nevertheless, soil waters in this generally wet, low energy environment exhibited only minor evaporative enrichment, limited to the upper soil profile only. Furthermore, stream water showed no deviation from the local meteoric water line. Preliminary sampling for tree xylem water suggested uptake of evaporated soil water from the near surface soil horizons (upper 10 cm) where fine root densities are concentrated. For Histosols in particular, tree water appeared lagged in its isotopic composition compared to the soil water time series. Although more work is needed to fully test the ‘two water worlds’ hypothesis, our initial analyses did not provide clear evidence to support this in wet, low energy northern environments.
KW - Isotopes
KW - Water Storage
KW - Soil Water Extraction
KW - Tree Water Use
U2 - 10.1002/hyp.10603
DO - 10.1002/hyp.10603
M3 - Article
VL - 29
SP - 5139
EP - 5152
JO - Hydrological Processes
JF - Hydrological Processes
SN - 0885-6087
IS - 25
ER -