Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects.

Vanessa Rungapamestry, Alan J Duncan, Zoe Fuller, Brian Ratcliffe

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

The isothiocyanate, sulforaphane, has been implicated in the cancer-protective effects of brassica vegetables. When broccoli is consumed, sulforaphane is released from hydrolysis of glucoraphanin by plant myrosinase and/or colonic microbiota. The influence of meal composition and broccoli-cooking duration on isothiocyanate uptake was investigated in a designed experiment. Volunteers (n 12) were each offered a meal, with or without beef, together with 150 g lightly cooked broccoli (microwaved 2·0 min) or fully cooked broccoli (microwaved 5·5 min), or a broccoli seed extract. They received 3 g mustard containing pre-formed allyl isothiocyanate (AITC) with each meal. Urinary output of allyl (AMA) and sulforaphane (SFMA) mercapturic acids, the biomarkers of production of AITC and sulforaphane respectively, were measured for 24 h after meal consumption. The estimated yield of sulforaphane in vivo was about 3-fold higher after consumption of lightly cooked broccoli than fully cooked broccoli. Absorption of AITC from mustard was about 1·3-fold higher following consumption of the meat-containing meal compared with the non meat-containing alternative. The meal matrix did not significantly influence the hydrolysis of glucoraphanin and its excretion as SFMA from broccoli. Isothiocyanates may interact with the meal matrix to a greater extent if they are ingested pre-formed rather than after their production from hydrolysis of glucosinolates in vivo. The main influence on the production of isothiocyanates in vivo is the way in which brassica vegetables are cooked, rather than the effect of the meal matrix.

Original languageEnglish
Pages (from-to)644-652
Number of pages9
JournalBritish Journal of Nutrition
Volume97
Issue number4
DOIs
Publication statusPublished - 2007

Fingerprint

Brassica
Cooking
Meals
Healthy Volunteers
Isothiocyanates
Mustard Plant
Hydrolysis
Vegetables
Meat
sulforafan
Glucosinolates
Microbiota
Acetylcysteine
Volunteers
Seeds
Biomarkers

Keywords

  • Allyl isothiocyanate
  • Sulforaphane
  • Mercapturic acid
  • Meal composition

Cite this

Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects. / Rungapamestry, Vanessa; Duncan, Alan J; Fuller, Zoe; Ratcliffe, Brian.

In: British Journal of Nutrition, Vol. 97, No. 4, 2007, p. 644-652.

Research output: Contribution to journalArticle

@article{cf72730e83b04edd93453e2f467a1164,
title = "Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects.",
abstract = "The isothiocyanate, sulforaphane, has been implicated in the cancer-protective effects of brassica vegetables. When broccoli is consumed, sulforaphane is released from hydrolysis of glucoraphanin by plant myrosinase and/or colonic microbiota. The influence of meal composition and broccoli-cooking duration on isothiocyanate uptake was investigated in a designed experiment. Volunteers (n 12) were each offered a meal, with or without beef, together with 150 g lightly cooked broccoli (microwaved 2·0 min) or fully cooked broccoli (microwaved 5·5 min), or a broccoli seed extract. They received 3 g mustard containing pre-formed allyl isothiocyanate (AITC) with each meal. Urinary output of allyl (AMA) and sulforaphane (SFMA) mercapturic acids, the biomarkers of production of AITC and sulforaphane respectively, were measured for 24 h after meal consumption. The estimated yield of sulforaphane in vivo was about 3-fold higher after consumption of lightly cooked broccoli than fully cooked broccoli. Absorption of AITC from mustard was about 1·3-fold higher following consumption of the meat-containing meal compared with the non meat-containing alternative. The meal matrix did not significantly influence the hydrolysis of glucoraphanin and its excretion as SFMA from broccoli. Isothiocyanates may interact with the meal matrix to a greater extent if they are ingested pre-formed rather than after their production from hydrolysis of glucosinolates in vivo. The main influence on the production of isothiocyanates in vivo is the way in which brassica vegetables are cooked, rather than the effect of the meal matrix.",
keywords = "Allyl isothiocyanate, Sulforaphane, Mercapturic acid, Meal composition",
author = "Vanessa Rungapamestry and Duncan, {Alan J} and Zoe Fuller and Brian Ratcliffe",
year = "2007",
doi = "10.1017/S0007114507381403",
language = "English",
volume = "97",
pages = "644--652",
journal = "British Journal of Nutrition",
issn = "0007-1145",
publisher = "Cambridge Univ. Press.",
number = "4",

}

TY - JOUR

T1 - Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects.

AU - Rungapamestry, Vanessa

AU - Duncan, Alan J

AU - Fuller, Zoe

AU - Ratcliffe, Brian

PY - 2007

Y1 - 2007

N2 - The isothiocyanate, sulforaphane, has been implicated in the cancer-protective effects of brassica vegetables. When broccoli is consumed, sulforaphane is released from hydrolysis of glucoraphanin by plant myrosinase and/or colonic microbiota. The influence of meal composition and broccoli-cooking duration on isothiocyanate uptake was investigated in a designed experiment. Volunteers (n 12) were each offered a meal, with or without beef, together with 150 g lightly cooked broccoli (microwaved 2·0 min) or fully cooked broccoli (microwaved 5·5 min), or a broccoli seed extract. They received 3 g mustard containing pre-formed allyl isothiocyanate (AITC) with each meal. Urinary output of allyl (AMA) and sulforaphane (SFMA) mercapturic acids, the biomarkers of production of AITC and sulforaphane respectively, were measured for 24 h after meal consumption. The estimated yield of sulforaphane in vivo was about 3-fold higher after consumption of lightly cooked broccoli than fully cooked broccoli. Absorption of AITC from mustard was about 1·3-fold higher following consumption of the meat-containing meal compared with the non meat-containing alternative. The meal matrix did not significantly influence the hydrolysis of glucoraphanin and its excretion as SFMA from broccoli. Isothiocyanates may interact with the meal matrix to a greater extent if they are ingested pre-formed rather than after their production from hydrolysis of glucosinolates in vivo. The main influence on the production of isothiocyanates in vivo is the way in which brassica vegetables are cooked, rather than the effect of the meal matrix.

AB - The isothiocyanate, sulforaphane, has been implicated in the cancer-protective effects of brassica vegetables. When broccoli is consumed, sulforaphane is released from hydrolysis of glucoraphanin by plant myrosinase and/or colonic microbiota. The influence of meal composition and broccoli-cooking duration on isothiocyanate uptake was investigated in a designed experiment. Volunteers (n 12) were each offered a meal, with or without beef, together with 150 g lightly cooked broccoli (microwaved 2·0 min) or fully cooked broccoli (microwaved 5·5 min), or a broccoli seed extract. They received 3 g mustard containing pre-formed allyl isothiocyanate (AITC) with each meal. Urinary output of allyl (AMA) and sulforaphane (SFMA) mercapturic acids, the biomarkers of production of AITC and sulforaphane respectively, were measured for 24 h after meal consumption. The estimated yield of sulforaphane in vivo was about 3-fold higher after consumption of lightly cooked broccoli than fully cooked broccoli. Absorption of AITC from mustard was about 1·3-fold higher following consumption of the meat-containing meal compared with the non meat-containing alternative. The meal matrix did not significantly influence the hydrolysis of glucoraphanin and its excretion as SFMA from broccoli. Isothiocyanates may interact with the meal matrix to a greater extent if they are ingested pre-formed rather than after their production from hydrolysis of glucosinolates in vivo. The main influence on the production of isothiocyanates in vivo is the way in which brassica vegetables are cooked, rather than the effect of the meal matrix.

KW - Allyl isothiocyanate

KW - Sulforaphane

KW - Mercapturic acid

KW - Meal composition

U2 - 10.1017/S0007114507381403

DO - 10.1017/S0007114507381403

M3 - Article

VL - 97

SP - 644

EP - 652

JO - British Journal of Nutrition

JF - British Journal of Nutrition

SN - 0007-1145

IS - 4

ER -