Effective scaling regime for computing the correlation dimension from chaotic time series

Ying-Cheng Lai, David Lerner

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system using delay coordinates. If the original dynamical system has an attractor then the con elation dimension D-2 of its image in the reconstruction can be estimated using the Grassberger-Procaccia algorithm. The quality of the reconstruction can be probed by measuring the length of the linear scaling region used in this estimation, In this paper we show that the quality is constrained by both the embedding dimension m and, mon importantly, by the delay time tau. For a given embedding dimension and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the delay time substantially to guarantee a reliable estimate of D-2. Our results imply that it is the delay time itself, rather than the total observation time (m - 1)tau, which plays the most critical role in the determination of the correlation dimension. Copyright (C) 1998 Elsevier Science B.V.

Original languageEnglish
Pages (from-to)1-18
Number of pages18
JournalPhysica. D, Nonlinear Phenomena
Volume115
Issue number1-2
DOIs
Publication statusPublished - 15 Apr 1998

Keywords

  • state-space reconstruction
  • small data sets
  • strange attractors
  • surrogate data
  • generalized dimensions
  • Lyapunov exponents
  • fractal measures
  • plateau onset
  • delay-time
  • determinism

Cite this

Effective scaling regime for computing the correlation dimension from chaotic time series. / Lai, Ying-Cheng; Lerner, David.

In: Physica. D, Nonlinear Phenomena, Vol. 115, No. 1-2, 15.04.1998, p. 1-18.

Research output: Contribution to journalArticle

@article{dca34edb364d4250922b517b15691617,
title = "Effective scaling regime for computing the correlation dimension from chaotic time series",
abstract = "In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system using delay coordinates. If the original dynamical system has an attractor then the con elation dimension D-2 of its image in the reconstruction can be estimated using the Grassberger-Procaccia algorithm. The quality of the reconstruction can be probed by measuring the length of the linear scaling region used in this estimation, In this paper we show that the quality is constrained by both the embedding dimension m and, mon importantly, by the delay time tau. For a given embedding dimension and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the delay time substantially to guarantee a reliable estimate of D-2. Our results imply that it is the delay time itself, rather than the total observation time (m - 1)tau, which plays the most critical role in the determination of the correlation dimension. Copyright (C) 1998 Elsevier Science B.V.",
keywords = "state-space reconstruction, small data sets, strange attractors, surrogate data, generalized dimensions, Lyapunov exponents, fractal measures, plateau onset, delay-time, determinism",
author = "Ying-Cheng Lai and David Lerner",
year = "1998",
month = "4",
day = "15",
doi = "10.1016/S0167-2789(97)00230-3",
language = "English",
volume = "115",
pages = "1--18",
journal = "Physica. D, Nonlinear Phenomena",
issn = "0167-2789",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Effective scaling regime for computing the correlation dimension from chaotic time series

AU - Lai, Ying-Cheng

AU - Lerner, David

PY - 1998/4/15

Y1 - 1998/4/15

N2 - In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system using delay coordinates. If the original dynamical system has an attractor then the con elation dimension D-2 of its image in the reconstruction can be estimated using the Grassberger-Procaccia algorithm. The quality of the reconstruction can be probed by measuring the length of the linear scaling region used in this estimation, In this paper we show that the quality is constrained by both the embedding dimension m and, mon importantly, by the delay time tau. For a given embedding dimension and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the delay time substantially to guarantee a reliable estimate of D-2. Our results imply that it is the delay time itself, rather than the total observation time (m - 1)tau, which plays the most critical role in the determination of the correlation dimension. Copyright (C) 1998 Elsevier Science B.V.

AB - In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system using delay coordinates. If the original dynamical system has an attractor then the con elation dimension D-2 of its image in the reconstruction can be estimated using the Grassberger-Procaccia algorithm. The quality of the reconstruction can be probed by measuring the length of the linear scaling region used in this estimation, In this paper we show that the quality is constrained by both the embedding dimension m and, mon importantly, by the delay time tau. For a given embedding dimension and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the delay time substantially to guarantee a reliable estimate of D-2. Our results imply that it is the delay time itself, rather than the total observation time (m - 1)tau, which plays the most critical role in the determination of the correlation dimension. Copyright (C) 1998 Elsevier Science B.V.

KW - state-space reconstruction

KW - small data sets

KW - strange attractors

KW - surrogate data

KW - generalized dimensions

KW - Lyapunov exponents

KW - fractal measures

KW - plateau onset

KW - delay-time

KW - determinism

U2 - 10.1016/S0167-2789(97)00230-3

DO - 10.1016/S0167-2789(97)00230-3

M3 - Article

VL - 115

SP - 1

EP - 18

JO - Physica. D, Nonlinear Phenomena

JF - Physica. D, Nonlinear Phenomena

SN - 0167-2789

IS - 1-2

ER -