Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor

Sergio Dall'angelo, Qingzhi Zhang, Ian N Fleming, Monica Piras, Lutz F Schweiger, David O'Hagan, Matteo Zanda

Research output: Contribution to journalArticle

41 Downloads (Pure)

Abstract

The utility of 5-fluoro-5-deoxyribose (FDR) as an efficient bioconjugation agent for radiolabelling of the RGD peptides c(RGDfK) and c(RGDfC) is demonstrated. The bioconjugation is significantly superior to that achieved with 2-fluoro-2-deoxyglucose (FDG) and benefits from the location of the fluorine at C-5, and that ribose is a 5-membered ring sugar rather than a 6-membered ring. Both features favour ring opening to the aldehydic form of the sugar to promote smooth oxime ligation with aminooxy ether functionalised peptides. [(18)F]FDR was prepared in this study by synthesis from fluoride-18 using an automated synthesis protocol adapting that used routinely for [(18)F]FDG. c(RGDfK) was functionalised with an aminooxyacetyl group (Aoa) via its lysine terminus, while c(RGDfC) was functionalised with an aminooxyhexylmaleimide (Ahm) through a cysteine-maleimide conjugation. Bioconjugation of [(18)F]FDR to c(RGDfC)-Ahm proved to be more efficient than c(RGDfK)-Aoa (92% versus 65%). The unlabelled ((19)F) bioconjugates c(RGDfK)-Aoa-FDR and c(RGDfC)-Ahm-FDR were prepared and their in vitro affinity to purified integrin αvβ3 was determined. c(RGDfK)-Aoa-FDR showed the greater affinity. Purified "hot" bioconjugates c(RGDfK)-Aoa-[(18)F]FDR and c(RGDfC)-Ahm-[(18)F]FDR were assayed by incubation with MCF7, LNCaP and PC3 cell lines. In both cases the conjugated RGD peptides showed selectivity for PC3 cells, which express αvβ3 integrin, with the c(RGDfK)-Aoa-[(18)F]FDR demonstrating better binding, consistent with its higher in vitro affinity. The study demonstrates that [(18)F]FDR is an efficient bioconjugation ligand for RGD bioactive peptides.
Original languageEnglish
Pages (from-to)4551-4558
Number of pages8
JournalOrganic & Biomolecular Chemistry
Volume27
Issue number11
Early online date15 May 2013
DOIs
Publication statusPublished - 3 Jun 2013

Fingerprint Dive into the research topics of 'Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor'. Together they form a unique fingerprint.

  • Equipment

    BD Calibur

    Andrea Holme (Manager)

    Iain Fraser Cytometry Centre

    Research Facilities: Equipment

  • Cite this