TY - JOUR
T1 - Elucidating the reactivity of methoxyphenol positional isomers towards hydrogen-transfer reactions by ATR-IR spectroscopy of the liquid-solid interface of RANEY® Ni
AU - De Castro, Ilton Barros Daltro
AU - Graça, Inês
AU - Rodríguez-García, Laura
AU - Kennema, Marco
AU - Rinaldi, Roberto
AU - Meemken, Fabian
PY - 2018
Y1 - 2018
N2 - In the valorisation of lignin, the application of catalytic hydrogen transfer reactions (e.g. in catalytic upstream biorefining or lignin-first biorefining) has brought a renewed interest in the fundamental understanding of hydrogen-transfer processes in the defunctionalisation of lignin-derived phenolics. In this report, we address fundamental questions underlining the distinct reactivity patterns of positional isomers of guaiacol towards H-transfer reactions in the presence of RANEY® Ni and 2-PrOH (solvent and H-donor). We studied the relationship between reactivity patterns of 2-, 3- and 4-methoxyphenols and their interactions at the liquid-solid interface of RANEY® Ni as probed by attenuated total reflection infrared (ATR-IR) spectroscopy. Regarding the reactivity patterns, 2-methoxyphenol or guaiacol is predominantly converted into cyclohexanol through a sequence of reactions including demethoxylation of 2-methoxyphenol to phenol followed by hydrogenation of phenol to cyclohexanol. By contrast, for the conversion of the two non-lignin related positional isomers, the corresponding 3- and 4-methoxycyclohexanols are the major reaction products. The ATR-IR spectra of the liquid-solid interface of RANEY® Ni revealed that the adsorbed 2-methoxyphenol assumes a parallel orientation to the catalyst surface, which allows a strong interaction between the methoxy C-O bond and the surface. Conversely, the adsorption of 3- or 4-methoxyphenol leads to a tilted surface complex in which the methoxy C-O bond establishes no interaction with the catalyst. These observations are also corroborated by a smaller activation entropy found for the conversion of 2-methoxyphenol relative to those of the other two positional isomers.
AB - In the valorisation of lignin, the application of catalytic hydrogen transfer reactions (e.g. in catalytic upstream biorefining or lignin-first biorefining) has brought a renewed interest in the fundamental understanding of hydrogen-transfer processes in the defunctionalisation of lignin-derived phenolics. In this report, we address fundamental questions underlining the distinct reactivity patterns of positional isomers of guaiacol towards H-transfer reactions in the presence of RANEY® Ni and 2-PrOH (solvent and H-donor). We studied the relationship between reactivity patterns of 2-, 3- and 4-methoxyphenols and their interactions at the liquid-solid interface of RANEY® Ni as probed by attenuated total reflection infrared (ATR-IR) spectroscopy. Regarding the reactivity patterns, 2-methoxyphenol or guaiacol is predominantly converted into cyclohexanol through a sequence of reactions including demethoxylation of 2-methoxyphenol to phenol followed by hydrogenation of phenol to cyclohexanol. By contrast, for the conversion of the two non-lignin related positional isomers, the corresponding 3- and 4-methoxycyclohexanols are the major reaction products. The ATR-IR spectra of the liquid-solid interface of RANEY® Ni revealed that the adsorbed 2-methoxyphenol assumes a parallel orientation to the catalyst surface, which allows a strong interaction between the methoxy C-O bond and the surface. Conversely, the adsorption of 3- or 4-methoxyphenol leads to a tilted surface complex in which the methoxy C-O bond establishes no interaction with the catalyst. These observations are also corroborated by a smaller activation entropy found for the conversion of 2-methoxyphenol relative to those of the other two positional isomers.
UR - http://www.scopus.com/inward/record.url?scp=85049028543&partnerID=8YFLogxK
U2 - 10.1039/c8cy00491a
DO - 10.1039/c8cy00491a
M3 - Article
AN - SCOPUS:85049028543
VL - 8
SP - 3107
EP - 3114
JO - Catalysis Science & Technology
JF - Catalysis Science & Technology
SN - 2044-4753
IS - 12
ER -